
	

https://vakaxoduz.maxudijuz.com/671256097211087943726067949382091297655479?dotilubokefufiterigigidoxifaketaneverozomane=wapedozirelawisidawukavoxojipotajexotubagibosizivululivomosonozizogakaritibirirowefenilafakinufadowosetifigudejinotasodujefotamazufuxopobovisixipoxojojetisekirifulupomuxokumonexibigawazoxotomevebagerotoxe&utm_kwd=paper+baby+crib+template&sesativotutimikowarukokajazukamupusiwajovogezavufazi=lewazejilepesumajegupubijasiwosenojonuxidorezujokiriwavobomafevaxebuvixifiwonuzuwomogafazukikajapojutubugexenilujozapixod

	Point	1	-	Install	and	run	There	should	be	no	problems	here,	because	here	the	process	is	similar	to	installing	a	regular	core	for	a	server	or	a	bungee.	1)	Download	Velocity	from	the	Papermc	website.	2)	Put	the	one	you	downloaded	.jar	file	to	a	specific	folder,	then	create	a	file	in	it	start.bat	(start.sh	if	linux)	,	in	which	write	the	following:	java	-Xmx2G	-
Xms2G	-XX:+UseG1GC	-XX:G1HeapRegionSize=4M	-XX:+UnlockExperimentalVMOptions	-XX:+ParallelRefProcEnabled	-XX:+AlwaysPreTouch	-XX:MaxInlineLevel=15	-jar	velocity.jar	(Note.	You	will	need	Java	version	11	or	higher!)	3)	Now	run	it.	After	that,	wait	until	all	folders	and	files	are	created	and	after	a	message	like	"Done	(2,2s)!"	close	the
console	window	that	opens.	Run	it	again	after	full	configuration.		Point	2	-	Velocity	setting	Velocity	has	one	configuration	file	-	velocity.toml.	It	can	be	opened	using	any	text	editor.	config-version	=	"2.6"	bind	=	"0.0.0.0:25577"	motd	=	"A	Velocity	Server"	show-max-players	=	500	online-mode	=	true	force-key-authentication	=	true	prevent-client-proxy-
connections	=	false	#	Should	we	forward	IP	addresses	and	other	data	to	backend	servers?	#	Available	options:	#	-	"none":	No	forwarding	will	be	done.	All	players	will	appear	to	be	connecting	#	from	the	proxy	and	will	have	offline-mode	UUIDs.	#	-	"legacy":	Forward	player	IPs	and	UUIDs	in	a	BungeeCord-compatible	format.	Use	this	#	if	you	run
servers	using	Minecraft	1.12	or	lower.	#	-	"bungeeguard":	Forward	player	IPs	and	UUIDs	in	a	format	supported	by	the	BungeeGuard	#	plugin.	Use	this	if	you	run	servers	using	Minecraft	1.12	or	lower,	and	are	#	unable	to	implement	network	level	firewalling	(on	a	shared	host).	#	-	"modern":	Forward	player	IPs	and	UUIDs	as	part	of	the	login	process
using	#	Velocity's	native	forwarding.	Only	applicable	for	Minecraft	1.13	or	higher.	player-info-forwarding-mode	=	"NONE"	#	If	you	are	using	modern	or	BungeeGuard	IP	forwarding,	configure	a	file	that	contains	a	unique	secret	here.	#	The	file	is	expected	to	be	UTF-8	encoded	and	not	empty.	forwarding-secret-file	=	"forwarding.secret"	#	Announce
whether	or	not	your	server	supports	Forge.	If	you	run	a	modded	server,	we	#	suggest	turning	this	on.	#	#	If	your	network	runs	one	modpack	consistently,	consider	using	ping-passthrough	=	"mods"	#	instead	for	a	nicer	display	in	the	server	list.	announce-forge	=	false	#	If	enabled	(default	is	false)	and	the	proxy	is	in	online	mode,	Velocity	will	kick	#
any	existing	player	who	is	online	if	a	duplicate	connection	attempt	is	made.	kick-existing-players	=	false	#	Should	Velocity	pass	server	list	ping	requests	to	a	backend	server?	#	Available	options:	#	-	"disabled":	No	pass-through	will	be	done.	The	velocity.toml	and	server-icon.png	#	will	determine	the	initial	server	list	ping	response.	#	-	"mods":	Passes
only	the	mod	list	from	your	backend	server	into	the	response.	#	The	first	server	in	your	try	list	(or	forced	host)	with	a	mod	list	will	be	#	used.	If	no	backend	servers	can	be	contacted,	Velocity	won't	display	any	#	mod	information.	#	-	"description":	Uses	the	description	and	mod	list	from	the	backend	server.	The	first	#	server	in	the	try	(or	forced	host)
list	that	responds	is	used	for	the	#	description	and	mod	list.	#	-	"all":	Uses	the	backend	server's	response	as	the	proxy	response.	The	Velocity	#	configuration	is	used	if	no	servers	could	be	contacted.	ping-passthrough	=	"DISABLED"	#	If	not	enabled	(default	is	true)	player	IP	addresses	will	be	replaced	by	in	logs	enable-player-address-logging	=	true
[servers]	#	Configure	your	servers	here.	Each	key	represents	the	server's	name,	and	the	value	#	represents	the	IP	address	of	the	server	to	connect	to.	lobby	=	"127.0.0.1:30066"	factions	=	"127.0.0.1:30067"	#	In	what	order	we	should	try	servers	when	a	player	logs	in	or	is	kicked	from	a	server.	try	=	["lobby"]	[forced-hosts]	#	Configure	your	forced
hosts	here.	"lobby.example.com"	=	["lobby"]	"factions.example.com"	=	["factions"]	[advanced]	compression-threshold	=	256	compression-level	=	-1	login-ratelimit	=	3000	connection-timeout	=	5000	read-timeout	=	30000	haproxy-protocol	=	false	tcp-fast-open	=	false	bungee-plugin-message-channel	=	true	show-ping-requests	=	false	failover-on-
unexpected-server-disconnect	=	true	announce-proxy-commands	=	true	log-command-executions	=	false	log-player-connections	=	true	[query]	enabled	=	false	port	=	25577	map	=	"Velocity"	show-plugins	=	false	Now	let's	go	directly	to	the	setup.	First	of	all,	let's	define	the	type	of	"forwarding"	And	here	I	am	ready	to	give	you	advice.	If	you	keep	the
server	on	versions	1.13+,	then	as	indicated,	use	the	player-info-forwarding-mode	=	"modern".	If	you	keep	the	server	on	versions	1.12	and	below,	you	are	recommended	to	use	the	player-info-forwarding-mode	=	"bungeeguard".	Specify	this	value	according	to	what	is	suitable	for	you.	Next,	we	need	to	come	up	with	a	key	and	specify	it	in	the	file	that	is
specified	in	the	forwarding-secret	=	"forwarding.secret"	column.	If	you	chosen	modern	mode,	then	this	key	will	need	to	be	set	in	paper.yml	by	finding	the	velocity-support	field,	then	activating	it	by	setting	enabled:	true,	then	finding	the	secret:	field,	the	default:	field	in	it,	and	inserting	the	key	you	invented	into	quotes.	If	you	have	chosen	bungeeguard,
you	will	need	to	download	the	BungeeGuard	plugin	and	insert	the	key	you	invented	into	its	config	in	the	allowed-tokens	field:	Important	note:	In	the	spigot.yml	file	there	is	a	string	bungeecord:	false	If	you	have	configured	player-info-forwarding-mode	=	"modern"	and	enabled	velocity	support	in	paper.yml,	this	field	should	remain	false.	If	you	have	a
bungeeguard	value,	it	should	be	set	to	true!	Next,	we	need	to	configure	the	servers.	Everything	is	simple	here.	In	the	servers	section	you	have	examples	of	configured	servers.	You	just	need	to	substitute	your	values	and,	if	necessary,	rename	the	servers	for	yourself.	Just	specify	server_name	=	"Server	IP:server	port".	After	you	have	added	all	the
servers	you	need,	specify	the	server	to	which	the	player	will	be	connected	immediately	after	entering	in	the	try	=	column	Now	let's	look	at	some	settings	that	you	will	probably	change.	1)	tcp-fast-open	=	false	-	set	to	true	if	you	are	running	the	server	on	Lunix	(on	a	VDS/VPS/Dedicated	server).	2)	announce-proxy-commands	=	true	-	set	it	to	false	if	you
don't	want	the	tabcompletion	to	issue	your	proxy	commands	to	players.	3)	force-key-authentication	=	true	-	set	it	to	false	if	your	server	is	using	offline	mode	(We	don't	approve	of	it!)		Point	3	-	Velocity	Commands.	By	default,	Velocity	has	4	commands:	/velocity	(version|plugins|reload|dump)	-	shows	the	velocity	version	|	shows	the	velocity	plugins	|
reloads	the	proxy	|	unloads	the	dump	with	proxy	information,	respectively	/end	-	disables	the	proxy	/shutdown	-	the	same	as	end	/glist	-	shows	how	many	players	are	on	proxy	/server	-	allows	you	to	move	between	servers	You	can	read	more	about	them	here:		Point	4	-	Useful	utilities:	1)	Probably	the	most	important	part	is	protection	from	bots.	This
function	is	performed	by	the	following	two	plugins:	LimboFilter	+	LimboApi.	Actually,	after	installing	them,	everything	depends	on	you.	You	can	completely	customize	the	anti-bot	checks.	2)	By	default,	there	is	no	way	to	set	up	groups	and	permissions	in	velocity.	The	LuckPermsVelocity	plugin	will	help	with	this.	Install	it	on	a	proxy	and	use	it	as	a
permission	manager.	3)	On	velocity,	as	you	could	see,	there	are	no	commands	that	are	in	the	bungeecord,	such	as	/send,	/find,	etc.	In	order	to	add	them,	use	the	VelocityTools	plugin.	In	addition	to	these	commands,	it	includes	useful	functions,	by	the	type	of	command	/lobby,	the	ability	to	restrict	connections	directly	from	a	digital	IP,	and	so	on.	4)	The
CommandSync	plugin	may	be	quite	useful	for	you.	Recently,	cycling	support	has	been	added	to	it,	which	has	made	it	relevant	again.	In	short,	it	is	needed	in	order	to	execute	proxy	commands	on	servers.	Very	handy	if	you	can't	use	the	database,	but	you	have	several	game	modes.	5)	It	is	also	worth	thinking	about	blocking	commands.	If	you	need	to
restrict	other	commands	on	the	proxy	server,	it	is	recommended	that	you	use	the	CommandWhitelist	plugin.	By	the	name,	I	think	it's	already	clear	what	it	does.	Point	5	-	Useful	links.	-	of.	velocity	docks	page	Last	edited:	Apr	15,	2023	Reactions:	KungfuEpt	All	guides	on	this	seem	outdated,	on	Spigot,	or	not	explained	enough	for	my	small	brain.	I	know
I	have	to	add	the	Paper	Server	into	my	dependencies	but	I	don't	know	where	to	go	past	that.	I'm	not	quite	sure	how	to	do	this,	if	I'll	be	honest.	Is	there	any	in-depth	tutorial	because	the	instructions	on	the	GitHub	have	me	lost...	Basically,	no;	The	test	plugin	repo	linked	is	the	current	only	example	of	how	to	set	it	up,	documentation	is	planned	but	not	a
high	priority	vs	everything	else	we	need	to	get	to	(pr's	welcome,	etc),	only	guide	thus	far	is	basically	to	clone	that	repo,	tweak	the	stuff	as	needed,	and	use	that	as	the	base;	or,	copy	over	the	settings	and	build	config	changes	specific	for	paperweight	from	that	repo	Alright,	thank	you	nonetheless	I	hate	to	gatekeep,	but	if	learning	from	the	example
github	is	too	hard,	then	you	will	likely	struggle	with	the	compatibility	issues	that	arise	from	using	NMS.	It's	going	to	get	a	ton	easier	with	the	Mojang	Mappings,	but	I	still	wouldn't	recommend	it	unless	you	only	plan	on	supporting	a	single	version	at	a	time,	(until	you	understand	exactly	what's	going	on)	Sorry	to	revive	this	thread	again,	but	I've	finally
got	around	to	using	the	test	plugin	and	I	cloned	the	test	plugin	repo	and	it	was	going	well,	however,	in	usage,	I	got	errors	stating	"Invalid	plugin.yml".	I	put	my	plugin.yml	in	the	usual	spot	for	other	plugins	"src/main/resources",	removed	the	plugin	to	auto-create	a	plugin.yml,	even	tried	letting	the	plugin	make	one	itself	but	every	time	I	got	an	error.
The	only	differences	between	this	plugin	and	my	other	working	one	is	that	this	one	is	gradle,	the	other	is	maven,	and	(somehow)	the	project	keeps	forcing	separate	modules	for	main	and	test	instead	of	using	one	for	the	entire	plugin	(which	worked	for	my	other	one).	@Tau	your	method	worked,	but	it	overrode	a	lot	of	paper	methods	that	I	have	been
using,	which	was	the	main	point	of	using	the	paper,	and	created	this	weird	mix	between	paper	and	spigot	that	I	feel	would	make	it	more	difficult	especially	using	the	docs	and	other	people's	answers.	Sorry	to	revive	this	thread	again,	but	I've	finally	got	around	to	using	the	test	plugin	and	I	cloned	the	test	plugin	repo	and	it	was	going	well,	however,	in
usage,	I	got	errors	stating	"Invalid	plugin.yml".	I	put	my	plugin.yml	in	the	usual	spot	for	other	plugins	"src/main/resources",	removed	the	plugin	to	auto-create	a	plugin.yml,	even	tried	letting	the	plugin	make	one	itself	but	every	time	I	got	an	error.	The	only	differences	between	this	plugin	and	my	other	working	one	is	that	this	one	is	gradle,	the	other	is
maven,	and	(somehow)	the	project	keeps	forcing	separate	modules	for	main	and	test	instead	of	using	one	for	the	entire	plugin	(which	worked	for	my	other	one).	@Tau	your	method	worked,	but	it	overrode	a	lot	of	paper	methods	that	I	have	been	using,	which	was	the	main	point	of	using	the	paper,	and	created	this	weird	mix	between	paper	and	spigot
that	I	feel	would	make	it	more	difficult	especially	using	the	docs	and	other	people's	answers.	Yes	as	i	stated	in	my	post	I	misread	your	thread.	Does	the	jarfile	contain	the	plugin.yml	at	all	if	you	open	it	with	a	program	such	as	7zip?	My	thought	is	you	might	be	relying	on	the	maven-resources	plugin	to	do	some	placeholder	replacement	that	isn't	being
done	now.	No,	there	isn't.	On	the	test	plugin	it	included	a	plugin	that	was	supposed	to	"generate	a	plugin.yml	file",	but	I	removed	it	and	added	my	own.	Is	there	anything	wrong	you	could	point	out	about	this	image?	By	"no,	there	isn't"	are	you	referring	to	the	lack	of	a	plugin.yml	in	the	final	jar?	If	not:	If	you	inspect	the	compiled	jar	does	the
${project.version}	get	replaced	properly?	Otherwise	I	wouldn't	be	able	to	help	you	as	i'm	not	much	of	a	gradle	person.	Yes,	there	is	no	plugin.yml.	This	is	confusing,	this	setup	works	perfectly	fine	until	I	run	it	on	the	paperweight	plugin,	I'm	not	quite	sure	what	could	be	wrong.	EDIT:	I	just	made	a	discovery,	I	decided	to	try	and	implant	the	plugin.yml
into	the	jar	and	it	worked,	but	it	said	it	could	not	find	main	class.	When	I	looked,	I	realized	that	my	entire	plugin	directory	wasn't	even	there!	I	don't	know	why,	I	don't	know	how!	If	this	is	the	root	of	the	issues,	then	how	does	this	even	happen?!	Could	you	please	pastebin	your	build.gradle.kts	file?	And	additionally	what	command	are	you	running	to
generate	the	jar?	Command?	I	didn't	know	I	needed	a	command...	I've	been	creating	artifacts	and	building	them...	Command?	I	didn't	know	I	needed	a	command...	I've	been	creating	artifacts	and	building	them...	or,	rather:	what	are	you	clicking	to	build	it?	(screenshot	is	fine).	Additionally,	what	jar	are	you	looking	at?	as	in	where	is	it	being	output
to/what	is	it	named.	Apologies	for	the	confusion.	I	created	an	artifact	on	Intellij:	^^	I	set	the	output	directory	straight	to	the	plugins	folder	so	I	didn't	have	to	move	it,	and	the	jar	compiles	fine	(Only	missing	plugin.yml,	but	if	I	manually	add	it	then	it	works	fine)	Yeah,	that	makes	sense.	By	doing	that	you	are	completely	bypassing	paperweight	and
Gradle,	as	well	as	not	including	your	plugin.yml.	I	don't	think	that	specific	configuration	would	have	worked	normally	either,	but	I'm	not	too	familiar	with	the	built-in	build	configs.	What	you'll	want	to	do	is	navigate	to	where	it	says	"Gradle"	on	the	right	side	of	your	screen,	and	then	select	paperweight	->	reobfJar.	Then	double	click	or	right	click	->
Run.	The	jar	will	then	be	located	in	build/libs/.	For	distribution	(running	on	spigot	mapped	servers)	you'll	want	to	select	the	jar	without	dev	in	the	name.	Thank	you	so	much!	It's	working	now	!	Reactions:	Timongcraft,	roan	and	Camm	The	hard	fork	is	real!	can	we	get	much	higher	plays	in	the	background	Congrats	to	the	Paper	team!	is	tokyo	still	going
to	be	destroyed	in	the	hard	fork?	/j	Last	edited:	Dec	13,	2024	Reactions:	Noy,	Camm	and	kennytv	This	is	huge	news	for	the	project	and	its	future!	this	is	a	bad	idea.	now	how	am	i	going	to	run	plugins	like	slimefun	and	geyser	now?	i	actually	read	the	post,	i	know	what's	going	on.	i	know	you	guys	want	to	not	depend	on	Spigot/CraftBukkit	Updates	to
make	the	update	faster.	i	still	oppose	this.	looks	terrible	idea	to	me.	if	paper	go	independent	on	spigot,	and	if	you	unable	to	go	back	to	spigot,	and	the	plugins	using	paper-api	cannot	run	on	spigot,	it's	not	counted	as	fork	anymore.	it's	scary.	We	are	still	a	fork	of	spigot	in	terms	of	what	a	fork	actually	is,	we	are,	however,	not	intending	to	keep	aligned
with	our	quasi	closed	upstream	project,	and	have	decided	that	we	would	much	rather	place	ourselves	in	a	position	where	we	can	work	on	stuff	without	having	to	worry	about	conflicts	arising	when	they	add	features	we	have	half	a	decade	later.	the	plugins	using	paper-api	cannot	run	on	spigot	If	you	use	API	specific	to	paper	API,	it	will	not	work	on
spigot;	That	has	literally	always	been	the	case;	long	term,	we	will	diverge,	however,	such	is	how	actual	forks	go.	i	actually	read	the	post,	i	know	what's	going	on.	i	know	you	guys	want	to	not	depend	on	Spigot/CraftBukkit	Updates	to	make	the	update	faster.	i	still	oppose	this.	looks	terrible	idea	to	me.	if	paper	go	independent	on	spigot,	and	if	you	unable
to	go	back	to	spigot,	and	the	plugins	using	paper-api	cannot	run	on	spigot,	it's	not	counted	as	fork	anymore.	it's	scary.	Considering	90	to	95	percent	of	modern	servers	run	Paper	or	derivatives,	it's	not	scary	at	all!	It's	liberating.	I'm	aware	of	dozens	and	dozens	of	plugins	planning	to	just	use	paper-api,	and	one	plugin	that	wants	to	stay	on	spigot.	no,	it's
scary	to	me.	it's	not	liberating	to	me.	what	if	Citizens	2	Uses	New	API/Methods/Enums	Introduced	By	Spigot	on	their	update?	besides	that,	Citizens	use	Relocation.	Considering	90	to	95	percent	of	modern	servers	run	Paper	or	derivatives,	it's	not	scary	at	all!	It's	liberating.	I'm	aware	of	dozens	and	dozens	of	plugins	planning	to	just	use	paper-api,	and
one	plugin	that	wants	to	stay	on	spigot.	no,	it's	scary	to	me.	it's	not	liberating	to	me.	what	if	Citizens	2	Uses	New	API/Methods/Enums	Introduced	By	Spigot	on	their	update?	besides	that,	Citizens	use	Relocation.	Most	plugins	will	probably	aim	for	working	on	paper	considering	how	many	servers	run	it.	And	if	a	dev	for	some	reason	would	rather	have
their	plugin	work	on	a	minority	of	servers	instead	of	the	majority	and	the	plugin	is	somewhat	popular	there	will	probably	be	some	fork	made	to	target	paper-api.	I	don't	know	about	Citizens	though	i	would	think	they	will	try	to	make	their	plugin	work	for	both	paper	and	spigot?	I	am	a	bit	inclined	to	oppose	this	decision.	I	don't	know	what	content	was
included	in	the	bstats	data	that	the	developers	reviewed	when	making	this	decision,	so	it	seems	that	they	may	have	some	misunderstandings	about	the	current	situation	of	Paper.	For	many	server	owners,	the	greatest	significance	of	using	Paper	is	"high	performance"	and	compatibility	with	Spigot,	allowing	them	to	enjoy	Spigot's	long-standing	plugin
community	while	also	having	a	modern	performance	server	software.	Even	for	many	developers,	why	do	I	have	to	migrate	downstream	and	manually	narrow	down	the	compatibility	range	of	my	plugins	if	there	is	no	need	for	me	to	use	the	PaperAPI?	That	is	to	say,	running	Paper	servers	has	a	huge	market	share,	but	it	does	not	necessarily	mean	that
there	is	a	strong	willingness	to	develop	Paper	plugins.	In	fact,	I	am	willing	to	post	the	startup	logs	of	my	server.	Let's	take	a	look	at	what	plugins	my	server	(a	survival	oriented	server	that	has	not	been	modified	much)	consists	of:	[12:19:32]	[ServerMain/INFO]:	[PluginInitializerManager]	Paper	plugins	(3):	-	BKCommonLib	(1.21.4-v1-SNAPSHOT),
CrazyCrates	(3.4.9),	PrefiX	(7.3)	[12:19:32]	[ServerMain/INFO]:	[PluginInitializerManager]	Bukkit	plugins	(71):	-	AdvancedCleaner	(1.4),	AnimatedScoreboard	(0.3.5),	AuthMe	(5.6.0-beta2-b2453),	AuthOp	(0.1),	BetterRTP	(3.6.12),	CMILib	(1.5.2.8),	Chat2QQ	(1.6),	CheckpointX	(3.0.7),	Chunky	(1.4.10),	Citizens	(2.0.37-SNAPSHOT	(build	3691)),
CommandToItem	(${version}),	CommonEditLib	(1.2.1),	CraftEnhance	(2.5.6.3.3),	CurveBuilding	(0.6.2),	DecentHolograms	(2.8.12),	DeluxeMenus	(1.14.1-DEV-183),	DisplayEntityEditor	(1.0.15),	Essentials	(2.21.0-dev+93-3a6fdd9),	EssentialsChat	(2.21.0-dev+93-3a6fdd9),	ExcellentEnchants	(4.3.3),	ExtraContexts	(2.0-SNAPSHOT),	GSit	(1.12.1),
ImageFrame	(1.7.13.0),	ItemEdit	(3.5.5),	ItemTag	(3.5.1),	Link2QQ	(1.2),	LuckPerms	(5.4.131),	MechanicsCore	(4.0.1),	MiniMOTD	(2.1.0),	MiraiMC	(1.8-rc1),	MoarBows	(2.6),	MobArena	(0.108),	MobsToEggs	(1.7.14),	Multiverse-Core	(4.3.13),	Multiverse-Portals	(4.2.3),	NexEngine	(2.2.12),	NoChatReports	(2.3.0),	ODailyQuests	(2.3.0-SNAPSHOT-10),
PlaceholderAPI	(2.11.6),	PlayerAuctions	(1.28.1),	PlayerParticles	(8.8),	ProtocolLib	(5.4.0-SNAPSHOT-739),	Quests	(3.15.2-b216e2b),	QuickShop-Hikari	(6.2.0.7),	RealisticSeasons	(11.6.3),	RedstoneMutex	(1.0-SNAPSHOT),	Residence	(5.1.6.4),	ScriptBlockPlus	(2.3.2),	Sentinel	(2.9.1-SNAPSHOT	(build	523)),	SetSpawn	(4.8),	SkinsRestorer	(15.5.1),
SpeedRoads	(1.0.1),	StartupCommands	(0.0.6),	TAB	(5.0.3),	TerraformGenerator	(18.0.0),	TianyuQQBinder	(1.0),	Train_Carts	(1.21.4-v1-SNAPSHOT),	Traincarts2Dynmap	(1.0),	Vault	(1.7.3-b131),	VeinMiner	(2.2.6),	ViaBackwards	(5.2.2-SNAPSHOT),	ViaVersion	(5.2.2-SNAPSHOT),	WeaponMechanics	(4.0.2),	WeaveCustomSchedule	(1.0),
WeaveLumenController	(1.0),	WorldEdit	(7.3.10-beta-01+cb9fd58),	WorldEditSelectionVisualizer	(2.1.6),	nightcore	(2.7.3),	packetevents	(2.7.0),	pvparena	(1.15.4-SNAPSHOT),	qsaddon-list	(6.1.0.2)	TL,	DR:	3	Paper	plugins,	71	Bukkit	(Spigot)	plugins.	There	are	many	plugins	here,	such	as	Residence,	Authme,	DecentHolograms,	DeluxeMenus	and
Citizens,	which	are	also	used	on	many	servers,	but	they	are	not	the	Paper	version	and	currently	do	not	seem	interested	in	updating	to	Paper.	I	don't	know	what	kind	of	confidence	I	need	to	have	in	this	situation	to	make	me	believe	that	I	should	continue	to	follow	up	on	the	progress	of	Paper	updates.	And,	This	decision	will	undoubtedly	divide	the
communities	of	Spigot	and	Paper	in	the	long	run,	forcing	all	plugin	developers	to	face	a	"choice	between	two"	situation.	As	far	as	the	current	situation	is	concerned,	I	cannot	consider	this	a	wise	decision.	I	am	a	bit	inclined	to	oppose	this	decision.	I	don't	know	what	content	was	included	in	the	bstats	data	that	the	developers	reviewed	when	making	this
decision,	so	it	seems	that	they	may	have	some	misunderstandings	about	the	current	situation	of	Paper.	For	many	server	owners,	the	greatest	significance	of	using	Paper	is	"high	performance"	and	compatibility	with	Spigot,	allowing	them	to	enjoy	Spigot's	long-standing	plugin	community	while	also	having	a	modern	performance	server	software.	Even
for	many	developers,	why	do	I	have	to	migrate	downstream	and	manually	narrow	down	the	compatibility	range	of	my	plugins	if	there	is	no	need	for	me	to	use	the	PaperAPI?	That	is	to	say,	running	Paper	servers	has	a	huge	market	share,	but	it	does	not	necessarily	mean	that	there	is	a	strong	willingness	to	develop	Paper	plugins.	In	fact,	I	am	willing	to
post	the	startup	logs	of	my	server.	Let's	take	a	look	at	what	plugins	my	server	(a	survival	oriented	server	that	has	not	been	modified	much)	consists	of:	[12:19:32]	[ServerMain/INFO]:	[PluginInitializerManager]	Paper	plugins	(3):	-	BKCommonLib	(1.21.4-v1-SNAPSHOT),	CrazyCrates	(3.4.9),	PrefiX	(7.3)	[12:19:32]	[ServerMain/INFO]:
[PluginInitializerManager]	Bukkit	plugins	(71):	-	AdvancedCleaner	(1.4),	AnimatedScoreboard	(0.3.5),	AuthMe	(5.6.0-beta2-b2453),	AuthOp	(0.1),	BetterRTP	(3.6.12),	CMILib	(1.5.2.8),	Chat2QQ	(1.6),	CheckpointX	(3.0.7),	Chunky	(1.4.10),	Citizens	(2.0.37-SNAPSHOT	(build	3691)),	CommandToItem	(${version}),	CommonEditLib	(1.2.1),	CraftEnhance
(2.5.6.3.3),	CurveBuilding	(0.6.2),	DecentHolograms	(2.8.12),	DeluxeMenus	(1.14.1-DEV-183),	DisplayEntityEditor	(1.0.15),	Essentials	(2.21.0-dev+93-3a6fdd9),	EssentialsChat	(2.21.0-dev+93-3a6fdd9),	ExcellentEnchants	(4.3.3),	ExtraContexts	(2.0-SNAPSHOT),	GSit	(1.12.1),	ImageFrame	(1.7.13.0),	ItemEdit	(3.5.5),	ItemTag	(3.5.1),	Link2QQ	(1.2),
LuckPerms	(5.4.131),	MechanicsCore	(4.0.1),	MiniMOTD	(2.1.0),	MiraiMC	(1.8-rc1),	MoarBows	(2.6),	MobArena	(0.108),	MobsToEggs	(1.7.14),	Multiverse-Core	(4.3.13),	Multiverse-Portals	(4.2.3),	NexEngine	(2.2.12),	NoChatReports	(2.3.0),	ODailyQuests	(2.3.0-SNAPSHOT-10),	PlaceholderAPI	(2.11.6),	PlayerAuctions	(1.28.1),	PlayerParticles	(8.8),
ProtocolLib	(5.4.0-SNAPSHOT-739),	Quests	(3.15.2-b216e2b),	QuickShop-Hikari	(6.2.0.7),	RealisticSeasons	(11.6.3),	RedstoneMutex	(1.0-SNAPSHOT),	Residence	(5.1.6.4),	ScriptBlockPlus	(2.3.2),	Sentinel	(2.9.1-SNAPSHOT	(build	523)),	SetSpawn	(4.8),	SkinsRestorer	(15.5.1),	SpeedRoads	(1.0.1),	StartupCommands	(0.0.6),	TAB	(5.0.3),
TerraformGenerator	(18.0.0),	TianyuQQBinder	(1.0),	Train_Carts	(1.21.4-v1-SNAPSHOT),	Traincarts2Dynmap	(1.0),	Vault	(1.7.3-b131),	VeinMiner	(2.2.6),	ViaBackwards	(5.2.2-SNAPSHOT),	ViaVersion	(5.2.2-SNAPSHOT),	WeaponMechanics	(4.0.2),	WeaveCustomSchedule	(1.0),	WeaveLumenController	(1.0),	WorldEdit	(7.3.10-beta-01+cb9fd58),
WorldEditSelectionVisualizer	(2.1.6),	nightcore	(2.7.3),	packetevents	(2.7.0),	pvparena	(1.15.4-SNAPSHOT),	qsaddon-list	(6.1.0.2)	TL,	DR:	3	Paper	plugins,	71	Bukkit	(Spigot)	plugins.	There	are	many	plugins	here,	such	as	Residence,	Authme,	DecentHolograms,	DeluxeMenus	and	Citizens,	which	are	also	used	on	many	servers,	but	they	are	not	the
Paper	version	and	currently	do	not	seem	interested	in	updating	to	Paper.	I	don't	know	what	kind	of	confidence	I	need	to	have	in	this	situation	to	make	me	believe	that	I	should	continue	to	follow	up	on	the	progress	of	Paper	updates.	And,	This	decision	will	undoubtedly	divide	the	communities	of	Spigot	and	Paper	in	the	long	run,	forcing	all	plugin
developers	to	face	a	"choice	between	two"	situation.	As	far	as	the	current	situation	is	concerned,	I	cannot	consider	this	a	wise	decision.	agreed.	i	oppose	this.	we	hate	to	face	choice	between	2.	see?	it's	scary.	"Paper	plugin"	is	sort	of	bad	branding	on	our	side,	it	does	not	mean	that	any	of	the	other	plugins	are	not	using	Paper	API,	it's	simply	a	separate
(optional!)	plugin	loader	with	more	features.	Most	of	your	plugins	already	use	some	form	of	Paper	API	or	even	strongly	recommend	using	Paper.	why	do	I	have	to	migrate	downstream	and	manually	narrow	down	the	compatibility	range	of	my	plugins	if	there	is	no	need	for	me	to	use	the	PaperAPI?	Hence	this	is	a	bit	of	a	misnomer;	not	using	Paper
already	limits	a	lot	of	your	plugins'	functionality.	I	can	guarantee	you	that	both	devs	and	Paper	users	won't	get	the	short	end	of	the	stick	once	the	two	platforms	diverge	further.	I	understand	that	such	change	can	be	scary,	but	you	really	have	nothing	to	worry	about,	and	there's	hardly	a	difficult	choice	to	be	made	here.	Either	you	add	simple
compatibility	measures	if	you	really	need	to	support	those	remaining	few	%,	or	you	simply	swap	a	dependency	only	for	new	versions	going	forward	Afaik	paper	plugins	are	also	currently	in	the	process	of	being	rebranded	to	Lifecycle	plugins	which	is	a	more	accurate	term.	Your	plugin	does	not	need	to	be	a	paper/Lifecycle	plugin	to	work	on	paper
infact	we	recommend	people	do	not	use	this	plugin	loader	unless	you	need	the	Features	it	provides	For	many	server	owners,	the	greatest	significance	of	using	Paper	is	"high	performance"	and	compatibility	with	Spigot,	allowing	them	to	enjoy	Spigot's	long-standing	plugin	community	while	also	having	a	modern	performance	server	software.	Even	for
many	developers,	why	do	I	have	to	migrate	downstream	and	manually	narrow	down	the	compatibility	range	of	my	plugins	if	there	is	no	need	for	me	to	use	the	PaperAPI?	We're	not	going	to	break	existing	APIs	for	some	sizable	period	of	time;	the	only	immediate	difference	is	us	not	merging	new	APIs,	but	most	of	the	side	effects	of	this	have	been
navigated	by	plugin	developers	for	years,	given	that	they're	often	expected	or	desire	to	support	multiple	versions	of	the	software.	We	trust	that	the	developers	who	are	willing	are	smart	enough	to	figure	out	how	they'd	want	to	support	two	platforms	should	they	desire.	This	is	especially	true	when	plugins	are	increasingly	having	to	rely	on	fragile
operations	to	take	advantage	of	Mojang's	infra	improvements	in	the	server.	That	is	to	say,	running	Paper	servers	has	a	huge	market	share,	but	it	does	not	necessarily	mean	that	there	is	a	strong	willingness	to	develop	Paper	plugins.	In	fact,	I	am	willing	to	post	the	startup	logs	of	my	server.	Let's	take	a	look	at	what	plugins	my	server	(a	survival	oriented
server	that	has	not	been	modified	much)	consists	of:	[12:19:32]	[ServerMain/INFO]:	[PluginInitializerManager]	Paper	plugins	(3):	-	BKCommonLib	(1.21.4-v1-SNAPSHOT),	CrazyCrates	(3.4.9),	PrefiX	(7.3)	[12:19:32]	[ServerMain/INFO]:	[PluginInitializerManager]	Bukkit	plugins	(71):	-	AdvancedCleaner	(1.4),	AnimatedScoreboard	(0.3.5),	AuthMe
(5.6.0-beta2-b2453),	AuthOp	(0.1),	BetterRTP	(3.6.12),	CMILib	(1.5.2.8),	Chat2QQ	(1.6),	CheckpointX	(3.0.7),	Chunky	(1.4.10),	Citizens	(2.0.37-SNAPSHOT	(build	3691)),	CommandToItem	(${version}),	CommonEditLib	(1.2.1),	CraftEnhance	(2.5.6.3.3),	CurveBuilding	(0.6.2),	DecentHolograms	(2.8.12),	DeluxeMenus	(1.14.1-DEV-183),
DisplayEntityEditor	(1.0.15),	Essentials	(2.21.0-dev+93-3a6fdd9),	EssentialsChat	(2.21.0-dev+93-3a6fdd9),	ExcellentEnchants	(4.3.3),	ExtraContexts	(2.0-SNAPSHOT),	GSit	(1.12.1),	ImageFrame	(1.7.13.0),	ItemEdit	(3.5.5),	ItemTag	(3.5.1),	Link2QQ	(1.2),	LuckPerms	(5.4.131),	MechanicsCore	(4.0.1),	MiniMOTD	(2.1.0),	MiraiMC	(1.8-rc1),	MoarBows
(2.6),	MobArena	(0.108),	MobsToEggs	(1.7.14),	Multiverse-Core	(4.3.13),	Multiverse-Portals	(4.2.3),	NexEngine	(2.2.12),	NoChatReports	(2.3.0),	ODailyQuests	(2.3.0-SNAPSHOT-10),	PlaceholderAPI	(2.11.6),	PlayerAuctions	(1.28.1),	PlayerParticles	(8.8),	ProtocolLib	(5.4.0-SNAPSHOT-739),	Quests	(3.15.2-b216e2b),	QuickShop-Hikari	(6.2.0.7),
RealisticSeasons	(11.6.3),	RedstoneMutex	(1.0-SNAPSHOT),	Residence	(5.1.6.4),	ScriptBlockPlus	(2.3.2),	Sentinel	(2.9.1-SNAPSHOT	(build	523)),	SetSpawn	(4.8),	SkinsRestorer	(15.5.1),	SpeedRoads	(1.0.1),	StartupCommands	(0.0.6),	TAB	(5.0.3),	TerraformGenerator	(18.0.0),	TianyuQQBinder	(1.0),	Train_Carts	(1.21.4-v1-SNAPSHOT),
Traincarts2Dynmap	(1.0),	Vault	(1.7.3-b131),	VeinMiner	(2.2.6),	ViaBackwards	(5.2.2-SNAPSHOT),	ViaVersion	(5.2.2-SNAPSHOT),	WeaponMechanics	(4.0.2),	WeaveCustomSchedule	(1.0),	WeaveLumenController	(1.0),	WorldEdit	(7.3.10-beta-01+cb9fd58),	WorldEditSelectionVisualizer	(2.1.6),	nightcore	(2.7.3),	packetevents	(2.7.0),	pvparena	(1.15.4-
SNAPSHOT),	qsaddon-list	(6.1.0.2)	TL,	DR:	3	Paper	plugins,	71	Bukkit	(Spigot)	plugins.	This	is	a	misnomer;	paper	plugins	are	more	just	"advanced	bootstrapper	lifecycle	plugins",	offering	access	for	plugins	to	bootstrap	earlier	and	perform	various	operations,	such	as	injecting	entries	into	the	servers'	registry,	something	which	is	going	to	become
increasingly	important	over	the	next	(and	past)	few	years	as	mojang	is	data	driving	the	server	software.	Paper	already	has	native	support	for	plugins	to	register	custom	enchantments,	painting	variants,	damage	types,	and	more	over	the	next	few	years.	There	is	no	requirement	for	plugins	to	adapt	to	this	system;	in	fact,	we	actively	discourage	people
from	using	this	system	unless	they	need	to	use	it	for	something.	The	reality	is	that	most	plugins	do	not	need	to	opt	into	using	the	early	bootstrapper	stuff,	but	it's	there	for	the	plugins	that	want	to.	I	don't	know	what	kind	of	confidence	I	need	to	have	in	this	situation	to	make	me	believe	that	I	should	continue	to	follow	up	on	the	progress	of	Paper
updates.	And,	This	decision	will	undoubtedly	divide	the	communities	of	Spigot	and	Paper	in	the	long	run,	forcing	all	plugin	developers	to	face	a	"choice	between	two"	situation.	As	far	as	the	current	situation	is	concerned,	I	cannot	consider	this	a	wise	decision.	Spigot	hasn't	cared	to	interact	with	the	community	outside	of	its	little	cubby	hole	for	well
over	a	decade	now,	and	the	last	noticeable	interaction	we	had	with	the	project	was	an	"if	you	start	sending	us	all	your	patches	and	kill	off	Paper,	I	might	let	you	join	the	spigot	team".	The	only	real	community	overlap	I've	seen	is	active	paper	developers	going	over	to	Spigot	to	try	to	collaborate	on	aspects	like	API	design	that	impact	us,	such	as	the
Item/BlockType	APIs,	which	are	much	more	in	line	with	our	original	vision	we	had	10	years	ago.	The	only	reach-out	we	ever	got	from	there	these	days	is	the	odd	contributor	who	wants	our	input	on	something	they	worked	on.	--	We	have	so	many	patches	over	Spigot	that	we	weren't	able	to	explore	our	patches	folder	on	GitHub	for	the	past	year,	and	the
paralysis	of	"but,	spigot	might	expose	API	for	that"	often	made	us	stall	working	on	or	merging	PRs	for	such	features,	such	as	the	work	we'd	started	to	do	on	breaking	down	Material	in	preparation	for	stuff	to	be	registry	driven	(as	well	as	the	well-needed	separation	from	that	broken	API	concept),	something	Spigot	finally	accepted	needed	to	happen,
almost	10	years	after	core	project	leaders	in	Paper	identified	the	need	for	this.	Mojang's	recent	changes	are	also	"fun"	in	that	releases	are	more	frequent	and	much	heavier	on	the	workload	in	order	to	rewrite	parts	of	the	game,	especially	when	dealing	with	the	unstable	output	provided	by	upstreams'	tooling	which	frequently	caused	conflicts	due	to
them	using	a	much	older	decompiler	which	produced	more	unstable	and	less	'unrefined'	output,	we	have	a	fraction	of	the	decompile	fixes	that	spigot	needs	with	the	entire	source	subtree	decompiled	vs	the	partial	decompile	that	spigot	performs.	Thanks	to	taking	advantage	of	and	collaborating	with	projects	within	the	community,	our	source	tree	is
much	nicer	to	work	with.	The	nature	of	Mojang's	new	release	cycle	also	allows	them	to	release	new	features	and	iterate	on	them.	Rather	than	the	ping-pong,	pong-pong,	pong	we'd	get	where	you'd	deal	with	a	substantially	large	update	followed	up	by	what	are	often	smaller	fixes,	the	releases	are	now	more	ping-pong,	ping-pong.	This	means	that	we're
no	longer	dealing	with	one	or	two	substantial	updates	a	year	combined	with	a	few	quick	ones	but	multiple	sizable	releases	a	year.	Part	of	the	reason	we've	been	able	to	manage	this	thus	far	is	more	a	set	of	happenchances;	we	can't	start	to	work	on	anything	until	our	quasi-closed-source	upstream	performs	a	release,	by	luck,	the	timezones	generally
mean	that	this	is	an	early	afternoon	for	us	Europeans,	assuming	he	doesn't	hold	a	release	hostage,	we	can	generally	preplan	to	some	degree	for	people	to	be	around	to	start,	however,	it's	only	through	the	fact	that	our	team	we've	managed	to	build	is	crazily	committed	to	developing	this	software	for	the	community	and	is	willing	to	pull	off	the	crazy
hours	and	work	around	the	clock,	which	is	honestly	so	unsustainable	I'm	surprised	that	we've	managed	to	pull	it	off	for	as	long	as	we	have.	--	It's	also	worth	remembering	that	one	of	the	first	changes	Mojang	did	on	this	release	cycle	was	rewriting	the	entirety	of	how	ItemStacks	are	represented,	migrating	from	"just	a	blob	of	NBT"	into	a	much	more
structured	and	defined	manner	of	representing	this	data,	with	items	now	defining	their	data	using	prototypes	rather	than	sporadically	hardcoded	behaviour	across	the	codebase;	These	changes	were	probably	one	of	the	more	notable	divergences	from	Spigot	we've	had	here;	1)	The	ItemMeta	API	that	they're	so	insistent	on	refusing	to	migrate	away
from	is	broken	and	fails	to	represent	how	items	work	in	the	game,	i.e.	you	cannot	query	attributes	about	a	food	item	in	vanilla	in	their	API;	only	items	with	that	component	overridden	by	plugins,	manually;	That	means	that	you	can't	query	components	which	are	actually	on	the	Item	itself	and	would	thus	need	to	use	internals	or	hardcoding,	to	perform
such	operations.	2)	Spigot	opted	for	compatibility	of	legacy	API	behaviour	in	a	manner	that	transforms	"I	want	to	hide	the	attributes	on	this	item"	into	"I	want	to	disable	all	of	the	default	attributes	on	this	item,	turning	all	of	my	tools	into	performing	worse	than	wooden	tier	tools",	rather	than	actually	addressing	the	fact	that	ItemStacks	are	a	bit	less
malleable	on	this	front.	In	terms	of	working	with	the	community	rather	than	sticking	in	our	corner,	we've	been	able	to	highlight	to	Mojang	that	many	members	and	we	dislike	this	underlying	change	as	it	creates	a	bunch	of	issues;	as	for	what	Mojang	will	do	with	that,	we're	yet	to	see,	but,	at	least	we	know	they	know	the	discontent	of	the	bundling	of
some	of	this	data	on	their	components.	It's	worth	noting	that	we	already	saw	the	signs	on	the	wall	and	had	started	work	on	a	Data	Component	API	when	Mojang	released	this	change,	a	welcomed	happy	surprise	that	we	were	able	to	adopt	directly	to	cater	towards	that	underlying	data	representation	relatively	easily;	And	that's	before	you	get	into	API
that	Spigot	generally	refused	to	support	for	the	better	part	of	a	decade,	i.e.	the	Biome	API	only	just	got	support	for	custom	biomes,	something	we've	had	primitive	support	for	in	Paper	for	years,	but	even	as	much	as	we	wanted	to,	couldn't	work	on	replacing	it	as,	at	first,	we'd	have	to	break	API	compatibility;	Then,	after	a	few	years,	they	finally
accepted	that	it	needed	to	happen,	in	which,	we	where	then	stuck	on	waiting	for	them	to	decide	if	and	how	they're	going	to	do	it;	Do	they	go	the	route	that	allows	us	to	deprecate	the	older	API	and	move	forward	with	the	new,	and	properly	expose	the	underlying	data	represented	by	Biomes,	or,	do	they	go	the	route	that	keeps	legacy	plugins	work	for	a
millennium	and	fail	to	expose	any	modern	information	about	Biomes	to	plugins.	They,	of	course,	opted	for	the	latter.	--	As	much	as	I'd	love	to	say,	"Paper	is	forever,"	one	day,	I	and	the	many	others	I	interact	with	on	this	project	daily	will	one	day	get	too	busy	and	have	to	move	on.	For	that,	we	will	need	to	be	able	to	onboard	new	developers	and	find
people	who	are	able	and	willing	to	replace	myself	and	other	team	members	as	the	time	arises.	There	are	many	people	out	there	who	fit	that	bill,	but	the	project's	stalemate	was	just	not	conducive	to	that.	The	hard	fork	isn't	something	new;	it	has	been	discussed	with	the	community	and	other	developers	for	years.	Mojang's	new	release	cycles,	our
desire	to	work	on	supporting	many	of	the	new	things	Mojang	is	increasingly	offering	in	the	game,	and	dealing	with	the	fact	that	we	were	struggling	to	onboard	new	developers	means	that	we	hit	our	"now	or	never";	and	now,	rather	than	worrying	about	how	we	might	have	to	wind	this	project	down	over	the	next	5	years,	We're	more	focused	on
ensuring	that	the	next	5	years	is	spent	on	preparing	for	the	next	5	years	after	that.	The	hard	fork	was	pretty	essential	to	the	life	of	this	project,	and	we	hope	that	many	are	willing	to	join	the	ride	with	us	over	the	next	many	years,	but,	it	is	ultimately	your	server.	--	NB:	apologies	that	this	got	kinda	rambly	Reactions:	Going	and	LoJoSho	We're	not	going
to	break	existing	APIs	for	some	sizable	period	of	time;	the	only	immediate	difference	is	us	not	merging	new	APIs,	but	most	of	the	side	effects	of	this	have	been	navigated	by	plugin	developers	for	years,	given	that	they're	often	expected	or	desire	to	support	multiple	versions	of	the	software.	We	trust	that	the	developers	who	are	willing	are	smart	enough
to	figure	out	how	they'd	want	to	support	two	platforms	should	they	desire.	This	is	especially	true	when	plugins	are	increasingly	having	to	rely	on	fragile	operations	to	take	advantage	of	Mojang's	infra	improvements	in	the	server.	This	is	a	misnomer;	paper	plugins	are	more	just	"advanced	bootstrapper	lifecycle	plugins",	offering	access	for	plugins	to
bootstrap	earlier	and	perform	various	operations,	such	as	injecting	entries	into	the	servers'	registry,	something	which	is	going	to	become	increasingly	important	over	the	next	(and	past)	few	years	as	mojang	is	data	driving	the	server	software.	Paper	already	has	native	support	for	plugins	to	register	custom	enchantments,	painting	variants,	damage
types,	and	more	over	the	next	few	years.	There	is	no	requirement	for	plugins	to	adapt	to	this	system;	in	fact,	we	actively	discourage	people	from	using	this	system	unless	they	need	to	use	it	for	something.	The	reality	is	that	most	plugins	do	not	need	to	opt	into	using	the	early	bootstrapper	stuff,	but	it's	there	for	the	plugins	that	want	to.	Spigot	hasn't
cared	to	interact	with	the	community	outside	of	its	little	cubby	hole	for	well	over	a	decade	now,	and	the	last	noticeable	interaction	we	had	with	the	project	was	an	"if	you	start	sending	us	all	your	patches	and	kill	off	Paper,	I	might	let	you	join	the	spigot	team".	The	only	real	community	overlap	I've	seen	is	active	paper	developers	going	over	to	Spigot	to
try	to	collaborate	on	aspects	like	API	design	that	impact	us,	such	as	the	Item/BlockType	APIs,	which	are	much	more	in	line	with	our	original	vision	we	had	10	years	ago.	The	only	reach-out	we	ever	got	from	there	these	days	is	the	odd	contributor	who	wants	our	input	on	something	they	worked	on.	--	We	have	so	many	patches	over	Spigot	that	we
weren't	able	to	explore	our	patches	folder	on	GitHub	for	the	past	year,	and	the	paralysis	of	"but,	spigot	might	expose	API	for	that"	often	made	us	stall	working	on	or	merging	PRs	for	such	features,	such	as	the	work	we'd	started	to	do	on	breaking	down	Material	in	preparation	for	stuff	to	be	registry	driven	(as	well	as	the	well-needed	separation	from
that	broken	API	concept),	something	Spigot	finally	accepted	needed	to	happen,	almost	10	years	after	core	project	leaders	in	Paper	identified	the	need	for	this.	Mojang's	recent	changes	are	also	"fun"	in	that	releases	are	more	frequent	and	much	heavier	on	the	workload	in	order	to	rewrite	parts	of	the	game,	especially	when	dealing	with	the	unstable
output	provided	by	upstreams'	tooling	which	frequently	caused	conflicts	due	to	them	using	a	much	older	decompiler	which	produced	more	unstable	and	less	'unrefined'	output,	we	have	a	fraction	of	the	decompile	fixes	that	spigot	needs	with	the	entire	source	subtree	decompiled	vs	the	partial	decompile	that	spigot	performs.	Thanks	to	taking
advantage	of	and	collaborating	with	projects	within	the	community,	our	source	tree	is	much	nicer	to	work	with.	The	nature	of	Mojang's	new	release	cycle	also	allows	them	to	release	new	features	and	iterate	on	them.	Rather	than	the	ping-pong,	pong-pong,	pong	we'd	get	where	you'd	deal	with	a	substantially	large	update	followed	up	by	what	are	often
smaller	fixes,	the	releases	are	now	more	ping-pong,	ping-pong.	This	means	that	we're	no	longer	dealing	with	one	or	two	substantial	updates	a	year	combined	with	a	few	quick	ones	but	multiple	sizable	releases	a	year.	Part	of	the	reason	we've	been	able	to	manage	this	thus	far	is	more	a	set	of	happenchances;	we	can't	start	to	work	on	anything	until	our
quasi-closed-source	upstream	performs	a	release,	by	luck,	the	timezones	generally	mean	that	this	is	an	early	afternoon	for	us	Europeans,	assuming	he	doesn't	hold	a	release	hostage,	we	can	generally	preplan	to	some	degree	for	people	to	be	around	to	start,	however,	it's	only	through	the	fact	that	our	team	we've	managed	to	build	is	crazily	committed
to	developing	this	software	for	the	community	and	is	willing	to	pull	off	the	crazy	hours	and	work	around	the	clock,	which	is	honestly	so	unsustainable	I'm	surprised	that	we've	managed	to	pull	it	off	for	as	long	as	we	have.	--	It's	also	worth	remembering	that	one	of	the	first	changes	Mojang	did	on	this	release	cycle	was	rewriting	the	entirety	of	how
ItemStacks	are	represented,	migrating	from	"just	a	blob	of	NBT"	into	a	much	more	structured	and	defined	manner	of	representing	this	data,	with	items	now	defining	their	data	using	prototypes	rather	than	sporadically	hardcoded	behaviour	across	the	codebase;	These	changes	were	probably	one	of	the	more	notable	divergences	from	Spigot	we've	had
here;	1)	The	ItemMeta	API	that	they're	so	insistent	on	refusing	to	migrate	away	from	is	broken	and	fails	to	represent	how	items	work	in	the	game,	i.e.	you	cannot	query	attributes	about	a	food	item	in	vanilla	in	their	API;	only	items	with	that	component	overridden	by	plugins,	manually;	That	means	that	you	can't	query	components	which	are	actually	on
the	Item	itself	and	would	thus	need	to	use	internals	or	hardcoding,	to	perform	such	operations.	2)	Spigot	opted	for	compatibility	of	legacy	API	behaviour	in	a	manner	that	transforms	"I	want	to	hide	the	attributes	on	this	item"	into	"I	want	to	disable	all	of	the	default	attributes	on	this	item,	turning	all	of	my	tools	into	performing	worse	than	wooden	tier
tools",	rather	than	actually	addressing	the	fact	that	ItemStacks	are	a	bit	less	malleable	on	this	front.	In	terms	of	working	with	the	community	rather	than	sticking	in	our	corner,	we've	been	able	to	highlight	to	Mojang	that	many	members	and	we	dislike	this	underlying	change	as	it	creates	a	bunch	of	issues;	as	for	what	Mojang	will	do	with	that,	we're
yet	to	see,	but,	at	least	we	know	they	know	the	discontent	of	the	bundling	of	some	of	this	data	on	their	components.	It's	worth	noting	that	we	already	saw	the	signs	on	the	wall	and	had	started	work	on	a	Data	Component	API	when	Mojang	released	this	change,	a	welcomed	happy	surprise	that	we	were	able	to	adopt	directly	to	cater	towards	that
underlying	data	representation	relatively	easily;	And	that's	before	you	get	into	API	that	Spigot	generally	refused	to	support	for	the	better	part	of	a	decade,	i.e.	the	Biome	API	only	just	got	support	for	custom	biomes,	something	we've	had	primitive	support	for	in	Paper	for	years,	but	even	as	much	as	we	wanted	to,	couldn't	work	on	replacing	it	as,	at	first,
we'd	have	to	break	API	compatibility;	Then,	after	a	few	years,	they	finally	accepted	that	it	needed	to	happen,	in	which,	we	where	then	stuck	on	waiting	for	them	to	decide	if	and	how	they're	going	to	do	it;	Do	they	go	the	route	that	allows	us	to	deprecate	the	older	API	and	move	forward	with	the	new,	and	properly	expose	the	underlying	data	represented
by	Biomes,	or,	do	they	go	the	route	that	keeps	legacy	plugins	work	for	a	millennium	and	fail	to	expose	any	modern	information	about	Biomes	to	plugins.	They,	of	course,	opted	for	the	latter.	--	As	much	as	I'd	love	to	say,	"Paper	is	forever,"	one	day,	I	and	the	many	others	I	interact	with	on	this	project	daily	will	one	day	get	too	busy	and	have	to	move	on.
For	that,	we	will	need	to	be	able	to	onboard	new	developers	and	find	people	who	are	able	and	willing	to	replace	myself	and	other	team	members	as	the	time	arises.	There	are	many	people	out	there	who	fit	that	bill,	but	the	project's	stalemate	was	just	not	conducive	to	that.	The	hard	fork	isn't	something	new;	it	has	been	discussed	with	the	community
and	other	developers	for	years.	Mojang's	new	release	cycles,	our	desire	to	work	on	supporting	many	of	the	new	things	Mojang	is	increasingly	offering	in	the	game,	and	dealing	with	the	fact	that	we	were	struggling	to	onboard	new	developers	means	that	we	hit	our	"now	or	never";	and	now,	rather	than	worrying	about	how	we	might	have	to	wind	this
project	down	over	the	next	5	years,	We're	more	focused	on	ensuring	that	the	next	5	years	is	spent	on	preparing	for	the	next	5	years	after	that.	The	hard	fork	was	pretty	essential	to	the	life	of	this	project,	and	we	hope	that	many	are	willing	to	join	the	ride	with	us	over	the	next	many	years,	but,	it	is	ultimately	your	server.	--	NB:	apologies	that	this	got
kinda	rambly	I'm	glad	to	hear	these	interesting	news	about	Paper	development.	As	a	developer,	I	fully	understand	the	difficulty	of	Paper's	work	in	this	situation,	as	well	as	the	need	to	strike	a	difficult	balance	between	"supporting	new	features"	and	"annoying	upstream	code"	every	time.	I	must	also	admit	that	Paper	provides	more	modern	and
numerous	features	than	Spigot,	and	to	be	honest,	many	of	these	Paper	features	should	have	been	the	work	that	Spigot	needs	to	do.	Indeed,	many	of	those	Bukkit	plugins	also	use	Paper	API	to	complete	their	functions	-	after	all,	not	all	plugin	developers	are	always	willing	to	deal	with	NMS.	I	admit	that	my	concerns	are	somewhat	unnecessary	for
excellent	Paper	developers,	but	I	think	the	content	mentioned	in	the	comments,	after	appropriate	supplementation,	may	also	be	published	as	another	announcement	in	the	community	to	enhance	people's	confidence	(or	developer	interviews	or	the	like).	It's	not	a	bad	thing	to	talk	about	such	things	in	a	rambling	manner,	as	there	is	too	much
background	information	that	needs	to	be	explained	to	the	audience.	But	obviously,	currently	Paper	development	still	relies	on	some	packages	from	org.bukkit.	Perhaps	one	day	you	will	replace	them	all	with	io.papermc.paper	:)	Hey,	it	seems	that	no	matter	what,	we	need	to	say	goodbye	to	Spigot.	But	i	still	dont	like	that!	It's	still	scary...	I	use	the
Spigot	API	Based	Plugins	more	often.	for	that,	i	would	like	to	still	stay	in	the	spigot-api	Plugins.	I	dont	want	to	use	alternatives	of	my	favorite	plugins.	Geyser-Spigot	also	uses	Spigot	For	Some	reason,	i	dont	want	to	use	Geyser-Standalone.	Slimefun	has	Paper	Support	Through	PaperLib,	But	it	has	Spigot	Support.	The	chances	that	Slimefun	will	be
Using	Paper-API	is	so	low.	So	i	am	still	scared	about	it.	But	i	still	dont	like	that!	It's	still	scary...	I	use	the	Spigot	API	Based	Plugins	more	often.	for	that,	i	would	like	to	still	stay	in	the	spigot-api	Plugins.	I	dont	want	to	use	alternatives	of	my	favorite	plugins.	Geyser-Spigot	also	uses	Spigot	For	Some	reason,	i	dont	want	to	use	Geyser-Standalone.	Slimefun
has	Paper	Support	Through	PaperLib,	But	it	has	Spigot	Support.	The	chances	that	Slimefun	will	be	Using	Paper-API	is	so	low.	So	i	am	still	scared	about	it.	It	really	feels	like	there's	no	scenario	that	would	make	you	happy	other	than	promising	100%	spigot	compatibility	forever.	If	some	well-liked	plugins	choose	to	support	only	a	tiny	fraction	of	their
users,	I'm	sure	alternatives	(or,	even,	just	forks)	will	appear	to	have	paper	support.	I'm	a	pretty	anxious	person	who	spends	far	too	much	of	his	time	thinking	about	negative	what-ifs	and	running	thought	experiments	in	my	head	about	how	things	can	go	wrong.	I'm	not	worried	about	paper's	hardfork.	If	some	well-liked	plugins	choose	to	support	only	a
tiny	fraction	of	their	users,	I'm	sure	alternatives	(or,	even,	just	forks)	will	appear	to	have	paper	support.	alternatives	designed	for	paper	dont	work	like	original	ones.	Slimefun	alternatives	Such	as	itemedit	doesn't	have	Industry	related	things.	i	am	super	scared	about	paper's	future,	what	if	bukkit/spigot	compatblity	breaks?	Page	2	alternatives
designed	for	paper	dont	work	like	original	ones.	Slimefun	alternatives	Such	as	itemedit	doesn't	have	Industry	related	things.	I	did	also	say	fork	in	the	message	you	quoted.	That's	also	a	possibility,	for	if	a	plugin	chooses	to	only	support	a	couple	percent	of	their	users,	abandoning	95%	of	them.	i	am	super	scared	about	paper's	future,	what	if
bukkit/spigot	compatblity	breaks?	I	do	not	know	what	to	tell	you,	as	you	appear	unwilling	to	accept	any	possibility	but	catastrophe.	of	course	i	am	unwilling	to	accept	any	possibility	but	catastrophe.	there	is	no	better	alternatives	for	slimefun.	No	One	will	try	to	rewrite	Slimefun	IV	and	some	of	the	alternatives	use	commands	or	configs(which	are
vulnerable)	instead	of	Java	Code.	of	course	i'm	scared	of	it.	sorry	for	off-topic	by	the	way.	I	don’t	know	why	your	personal	choice	of	software	to	use	becomes	a	responsibility	of	PaperMC.	Seems	to	be	a	very	self-centered	viewpoint.	Hard	fork	is	generally	a	good	thing	for	Paper	itself.	Either	embrace	it	or	be	left	in	forgotten	history.	The	world	moves	on
without	you	or	me	-	that's	just	how	things	are.	maybe	i	will	consider	embracing	it...	i	have	no	choice,	but	to	say	goodbye	to	our	Spigot	Plugin	Development.	I	mean,	the	maintainer	of	Slimefun	also	indicated	that	from	1.21	onward,	they	will	drop	Spigot	support	in	favor	of	Paper,	so	I	honestly	am	not	sure	where	all	the	fear	comes	from.	Did	you	perhaps
missed	their	announcement?	oh,	thank	god	it's	dropping	support	for	spigot	now.	ok,	now	i	understand.	i	have	to	accept	the	hardfork.	and	maybe,	adapt	to	new	modern	API.	i	wasn't	aware	about	the	announcement	because	i	didnt	have	a	discord	account.	Reactions:	EterNity	is	there	a	chance	that	Spigot	API	get	replaced	with	new	api	and	Dropped	in	the
future	when	Paper	Plugin	API	is	complete?	No	API	that	isn't	already	marked	as	deprecated	for	removal	will	be	removed	well,	seems	that	no	matter	what,	we	must	Move	Away	from	SpigotMC,	And	adapt	to	New	Modern	API	and	Forum.	This	Is	Not	an	Temporary	Moving	from	Spigot	API,	SpigotMC	Forum,	Reobfuscated	Mapping	Server,	to	Paper-API,
PaperMC	Forum,	hangar&Modrinth,	Mojang	Mapping,	This	is	an	Exodus	from	Spigot	API,	Spigot	Forum,	The	Destination	is	PaperMC,	This	Is	An	Exodus	From	Spigot,	Where	we	accept	the	hardfork	and	Move	on.	Your	Hardfork	was	bit	scary,	but	it	was	Liberating	from	the	strict	rules	of	SpigotMC.	Hope	we	see	the	Pre	Release	Versions!	Last	edited:
Feb	21,	2025	Hello	I've	been	following	this	closely	and	have	read	the	entire	thread,	including	the	responses	from	the	Paper	developers.	I	understand	the	purpose	of	this	hardfork,	but	I	agree	with	some	other	admins	who	are	concerned	because	my	server	relies	on	numerous	plugins	to	deliver	its	content.	So	I	submitted	the	question	to	a	few	developers
to	anticipate	the	impact	this	will	have	on	my	server	and	to	see	which	plugins	won't	follow	Paper	when	it	decouples	from	Spigot.	A	large	number	of	them	replied	that	they	won't	support	two	APIs	at	the	same	time	and	that	they	will	stick	with	Spigot.	Furthermore,	supporting	only	Paper	would	prohibit	them	from	using	Spigot	site,	which	remains	the	most
popular	and	well-known	site	for	distributing	their	plugins.	Despite	the	fact	that	Paper	is	now	much	more	widely	used	than	Spigot	(63%	vs.	16%),	they	prefer	to	continue	supporting	Spigot...	In	short,	all	this	is	to	say	that	our	concerns	remain	valid	at	this	time,	and	if	the	Paper	hardfork	breaks	compatibility	with	the	Spigot	API	in	future,	it's	undeniable
that	many	servers	will	find	it	very	difficult	to	continue	updating	their	plugins.	Especially	those	that	use	a	lot	of	them,	including	some	that	don't	have	an	equivalent.	For	us,	the	question	to	ask	is	whether	it's	more	viable	for	our	servers	to	switch	back	to	Spigot	while	there's	still	time,	or	whether	we	take	the	risk	of	following	Paper.	It's	a	difficult	gamble,
fraught	with	uncertainty;	not	to	mention	the	servers	that	have	no	choice	but	to	remain	on	Paper	due	to	its	high	resource	consumption.	Anyway,	thanks	for	your	great	work	on	Paper	We	understand	your	concerns	that	some	of	the	plugins	you're	currently	using	might	no	longer	work	on	Paper	in	the	future	because	the	developers	will	only	support	Spigot.
However,	we	know	of	many	plugins	that	will	either	keep	supporting	both	Spigot	and	Paper	or	outright	only	support	Paper	in	the	future,	such	as	WorldEdit,	WorldGuard,	EssentialsX,	and	Geyser.	Furthermore,	for	modern	versions,	there	is	an	even	larger	divide	between	Spigot	and	Paper.	For	example,	for	1.21.4,	the	amount	of	servers	using	Paper	is
>95%,	so	we're	confident	that	many	plugins	will	keep	supporting	Paper.	Of	course	there	might	be	some	developers	that	will	only	support	Spigot,	but	we	expect	the	community	to	be	able	to	provide	forks	or	alternatives	for	these	plugins	for	Paper.	Last	edited:	Mar	30,	2025	A	bigger	concern	I	think	is	not	plugins	that	are	still	being	supported,	but	those
that	aren’t.	Like	if	something	in	the	paper	api	breaks	vault	for	example	even	though	that’s	unlikely.	Although	thankfully	normal	Minecraft	updates	tend	to	break	plugins	that	rely	on	NMS	anyway	if	they	aren’t	updated.	When	it	comes	to	places	where	plugins	can	be	downloaded,	I	doubt	Hanger	is	going	to	become	that	popular	at	least	not	for	a	while.	I
find	that	more	and	more	new	plugins	are	being	posted	on	Modrinth,	but	there	are	other	alternatives	like	Built	by	Bit.	The	only	reason	why	the	spigot	site	is	popular	is	because	it	was	created	years	before	Paper.	Due	to	the	cross	compatability	that	new	plugins	strived	for,	they	decided	just	to	use	the	same	website	everyone	else	was	using.	That	being
said,	Hanger	needs	some	SEO	work	to	become	popular.	Even	the	Paper	plugins	on	my	server	I	don't	download	from	Hanger	and	instead	mostly	download	from	Modrinth.	Modrinth	has	a	huge	SEO	advantage	mostly	due	to	it	being	a	large	platform	already	for	modding.	Maybe	there	is	something	Paper	could	offer	plugin	devs	to	get	them	to	switch	over
to	Hanger	instead	of	Modrinth?	There	is	already	project	importing	from	Spigot	but	it	could	be	advertised	more.	Either	way,	Modrinth	is	a	good	platform	for	paper	plugins	already	and	I	bet	most	plugins	that	now	only	want	to	support	paper	will	just	switch	over	to	Modrinth	if	not	to	multiple	sites.	I'm	really	glad	you	finally	decided	to	do	this!	I	don't
understand	the	people	who	are	against	separating	from	Spigot	—	Spigot	isn't	going	anywhere,	and	if	someone	wants	to	stay	on	it,	they	still	can.	At	the	same	time,	for	those	who	truly	want	to	grow	and	move	forward	with	new	possibilities,	this	is	a	great	decision!	Ideally,	I’d	love	to	see	the	Paper	API	become	completely	different	from	the	Spigot/Bukkit
API	—	to	maximize	usability,	performance,	and	embrace	a	modern	approach.	I’d	like	the	difference	between	Spigot	and	Paper	to	be	as	big	as	the	difference	between	BungeeCord	and	Velocity.	Thank	you	for	your	work,	and	good	luck	to	you	guys!	Hello,	Only	the	owners	of	small	or	new	servers	can	rejoice	in	such	an	unreasonable	decision.	Probably	also
those	who	can	afford	to	pay	developers	a	fortune	to	update	their	plugins	and	make	them	compatible	with	Paper.	Older	servers	that	rely	on	numerous	plugins,	sometimes	abandoned	but	still	working,	will	find	themselves	trapped	in	a	fratricidal	war	between	the	developers	of	Paper	and	Spigot.	Basically	to	show	who	has	the	biggest	one..	When	Paper
was	released,	the	deal	was	that	all	Spigot	plugins	would	remain	compatible,	otherwise	they	knew	the	admins	would	stay	on	Spigot.	We,	the	admins,	trusted	them,	and	now	that	they've	tricked	us,	they	want	to	destroy	this	very	important	compatibility.	Most	of	those	reading	this	won't	understand	because	they	haven't	been	involved	in	Minecraft	servers
for	15	years,	and	won't	be	able	to	grasp	the	issues	involved.	A	well-thought-out	and	reasonable	solution	would	instead	be	to	create	a	new	fork	of	Paper	(ModernPaper,	for	example)	while	maintaining	the	current	Paper	branch	compatible	with	the	Spigot	API.	I	sincerely	hope	that	some	developers	will	continue	to	maintain	a	Spigot-compatible	version	of
Paper	because	without	it,	servers	like	mine	will	simply	disappear	because	the	majority	of	their	plugins	will	no	longer	work.	The	current	offering	of	plugins	exclusive	to	Paper	is	ridiculous	compared	to	the	Spigot-compatible	offering.	Hangar	is	also	extremely	poorly	designed,	while	the	Spigot	website	is	a	benchmark	in	its	field;	everything	is	clear,	each
plugin	has	its	own	discussion	thread,	including	comments,	whereas	on	Hangar,	everything	is	decentralized;	we	don't	feel	like	we're	part	of	a	community,	unlike	on	the	Spigot	website.	Plus	ther's	no	activity	on	forums	.	There's	no	support	on	the	website,	but	it	redirects	to	the	Discord	pages	for	each	plugin,	except	that	Discord	doesn't	allow	you	to	have
more	than	100	servers	(except	for	those	who	can	afford	to	waste	their	money	on	Nitro...).	Now	that	I've	trusted	Paper	in	the	past,	I'm	stuck;	my	server	will	no	longer	run	on	Spigot	because	I've	benefited	from	Paper's	performance	while	having	confidence	in	it.	So	I	can't	even	go	back	to	Spigot	if	I	want	to	keep	my	14-year-old	server	alive,	and	even
though	no	one	here	cares,	I'm	disgusted	because	it's	going	to	destroy	14	years	of	work.	Why?	Because	developers	are	bored	and	want	to	turn	a	1950s	car	into	a	post-2000s	prototype.	All	we	want	is	for	our	servers	to	actually	work.	If	we	want	a	more	powerful	plugin	API,	we'll	move	to	other	forks.	I	know	no	one	here	cares,	but	it	feels	good	to	express
my	concerns.	Contrary	to	what	you	might	think,	I'm	not	angry—I'm	a	nice	girl—but	I'm	just	disgusted	and	very	worried	that	my	community's	adventure	is	coming	to	an	end	because	of	an	unreasonable	decision	Have	a	good	Sunday	Reasonable	server	owners	always	keep	their	servers	updated.	Paper	has	always	supported	only	the	latest	version	and
nothing	else.	Because	of	that,	I	don’t	see	how	any	of	your	points	are	valid.	Older	versions	aren’t	supported	in	the	first	place,	hardfork	or	not.	There	are	plenty	of	plugins	available	on	both	Hangar	and	Modrinth	these	days.	Spigot	is	no	longer	the	only	place	for	resources.	If	you	didn’t	know	that,	you	probably	haven’t	been	keeping	up	with	the	latest
developments	in	the	Minecraft	space.	Running	an	outdated	server	is	like	using	Windows	XP	in	2025.	It’s	insecure,	full	of	exploits,	and	prone	to	crashes,	since	only	the	latest	version	receives	patches.	I	feel	like	you	are	the	one	being	unreasonable	here.	Project	moves	on	and	being	forever	stuck	supporting	legacy	will	only	stagnant	the	development
which	is	exactly	why	Spigot	has	been	left	behind	in	first	place	(as	you	mentioned	yourself	in	the	post,	you	cannot	live	without	Paper’s	performance	patch).	I'd	just	like	to	point	out	that,	much	like	we	may	someday	do	when	enough	time	has	passed,	spigot	has	regularly	broken	older	spigot	plugins.	This	isn't	new.	Devs	have	always	had	to	update	things,
and	ancient	plugins	have	always	eventually	broken.	Vault	touches	one	tiny	piece	of	API	that	has	remained	untouched	and	is	an	exception.	You	are	definitely	taking	a	fairly	small	impact	on	servers	and	exaggerating	it	to	a	scary	event.	Please	do	not	be	afraid.	Things	will	be	okay	and	we	are	here	to	support	you	through	the	gentle	changes.	Visit	us	on

discord	if	you	want	more	of	a	conversation	than	the	slowness	of	forum	posts.	My	server	is	updated	to	latest	game	version.	But	not	all	of	Reasonable	server	owners	always	keep	their	servers	updated.	Paper	has	always	supported	only	the	latest	version	and	nothing	else.	Because	of	that,	I	don’t	see	how	any	of	your	points	are	valid.	Older	versions	aren’t
supported	in	the	first	place,	hardfork	or	not.	There	are	plenty	of	plugins	available	on	both	Hangar	and	Modrinth	these	days.	Spigot	is	no	longer	the	only	place	for	resources.	If	you	didn’t	know	that,	you	probably	haven’t	been	keeping	up	with	the	latest	developments	in	the	Minecraft	space.	Running	an	outdated	server	is	like	using	Windows	XP	in	2025.
It’s	insecure,	full	of	exploits,	and	prone	to	crashes,	since	only	the	latest	version	receives	patches.	I	feel	like	you	are	the	one	being	unreasonable	here.	Project	moves	on	and	being	forever	stuck	supporting	legacy	will	only	stagnant	the	development	which	is	exactly	why	Spigot	has	been	left	behind	in	first	place	(as	you	mentioned	yourself	in	the	post,	you
cannot	live	without	Paper’s	performance	patch).	I	think	there's	a	misunderstanding^^	If	the	future	of	Paper	worries	me,	it's	precisely	because	I	keep	my	server	up	to	date.	Otherwise,	I	wouldn't	worry	about	it!	My	server	has	always	been	kept	up	to	date	since	its	creation	and	is	currently	at	1.21.4.	The	map	hasn't	been	reset	for	14	years,	yet	I	keep	it	up
to	date,	without	deleting	a	single	build.	I	work	like	crazy	to	keep	my	server	up	to	date	like	you've	never	seen	anywhere	else,	I	assure	you.	So	no,	the	problem	isn't	the	server	itself;	otherwise,	I	wouldn't	worry	about	future	versions	of	Paper^^	I'll	stick	with	an	old	version	and	that's	it.	The	problem	is	the	many	plugins	we	use,	many	of	which	haven't	been
maintained	for	years	but	still	work.	My	server	has	always	been	free	for	its	users	(no	pay-to-win,	no	store,	nothing!),	but	it	costs	me	a	fortune,	and	my	small	salary	won't	allow	me	to	pay	for	so	many	updates.	And	I'm	not	the	only	one	in	this	situation.	Of	course,	I've	been	aware	of	the	various	sites	for	downloading	plugins	for	a	long	time,	and	I	even	saw
their	creation,	just	like	Paper,	but	that	doesn't	change	anything.	There's	no	equivalent	for	many	of	my	plugins,	and	the	offering	is	much	smaller	and	less	extensive	than	Spigot.	Even	if	more	and	more	devs	publish	their	plugin	on	Modrinth,	Polymart,	MCModel	etc.	they	are	the	same,	there	is	very	little	difference	except	that	the	offer	is	spread	over
several	sites	instead	of	being	on	the	same	single	site	such	as	Spigot.	The	other	problem	is	that	we	use	many	niche	plugins,	which	are	part	of	the	specific	features	of	my	server	and	are	unfortunately	unique	and	without	equivalent...	I've	already	looked	at	the	plugins	and	the	developers	a	bit,	and	this	hard	fork	will	completely	divide	the	community.	A
large	number	of	developers	won't	follow	through,	even	though	their	plugins	are	paid.	Others	don't	really	know	what	they'll	do,	and	others	will	simply	stop	developing	plugins.	I'm	not	the	one	saying	this	stupidly,	but	rather	them	when	I	contacted	them	about	my	concerns.	Paper	forgets	where	it	comes	from,	its	origins,	and	what	made	its	existence
possible.	I'd	just	like	to	point	out	that,	much	like	we	may	someday	do	when	enough	time	has	passed,	spigot	has	regularly	broken	older	spigot	plugins.	This	isn't	new.	Devs	have	always	had	to	update	things,	and	ancient	plugins	have	always	eventually	broken.	Vault	touches	one	tiny	piece	of	API	that	has	remained	untouched	and	is	an	exception.	You	are
definitely	taking	a	fairly	small	impact	on	servers	and	exaggerating	it	to	a	scary	event.	Please	do	not	be	afraid.	Things	will	be	okay	and	we	are	here	to	support	you	through	the	gentle	changes.	Visit	us	on	discord	if	you	want	more	of	a	conversation	than	the	slowness	of	forum	posts.	It's	true	that	I'm	worried	because	my	server	is	the	foundation	of	a	very
nice,	close-knit	community,	and	if	I	can't	update	my	server	because	of	all	this,	we	all	know	how	it's	going	to	end...	I'm	so	afraid	that	my	server	will	have	to	remain	stuck	on	one	version	of	the	game	because	most	of	its	unique	features	will	no	longer	be	compatible.	I've	worked	so	hard	to	maintain	this	community	for	almost	15	years	that,	of	course,	such
an	announcement	worries	me	more	than	anything	else.	I'll	probably	join	your	Discord	channel.	Maybe	it'll	do	me	some	good	to	chat	with	you.	Sorry	if	I	came	across	as	rude;	that's	not	my	intention,	I'm	just	scared.	Older	servers	that	rely	on	numerous	plugins,	sometimes	abandoned	but	still	working,	will	find	themselves	trapped	in	a	fratricidal	war
between	the	developers	of	Paper	and	Spigot.	A	lot	of	these	plugins	only	still	work	due	to	Spigots	attitude	towards	never	breaking	plugins	ever	(except	for	the	random	coin	toss	in	which	they	broke	API	in	manners	that	could	cause	duplication	issues	or	just	crash	servers	with	0	warning	mid-release	cycle),	to	the	degree	that	they	invested	the	effort	into	a
chonky	mechanism	which	rewrites	the	code	of	every	single	plugin	that	loads,	ever;	and	have	often	refused	to	expose	features	to	plugins	in	order	to	prioritise	legacy	plugins	over	being	able	to	do	basic	operations	like	query	the	biome	of	a	chunk.	They	finally	accepted	that	this	would	harm	their	ability	to	move	forward	and	eventually	began	working	on
some	of	the	things	the	developer	community	had	been	asking	them	to	do	for	a	decade.	The	bytecode	rewriting	stuff	is	sadly	something	the	team	has	decided	to	carry	on	with	going	forwards	in	order	to	let	devs	pretend	that	mojang	isn't	moving	the	ecosystem	forward.	When	Paper	was	released,	the	deal	was	that	all	Spigot	plugins	would	remain
compatible,	otherwise	they	knew	the	admins	would	stay	on	Spigot.	We,	the	admins,	trusted	them,	and	now	that	they've	tricked	us,	they	want	to	destroy	this	very	important	compatibility.	At	the	time,	that	was	a	goal	we	considered	beneficial	for	both	the	community	and	ourselves.	In	good	faith,	we	cannot	refuse	to	move	forward	with	the	Minecraft
ecosystem.	We	either	adopt	Mojang's	efforts	to	improve	the	power	available	to	server	owners	or	give	up	and	close	shop.	We	have	consistently	talked	about	our	plans	to	break	away	from	spigot	for	years	now,	in	public,	there	is	no	tricking	here,	we	just	finally	decided	we	could	no	longer	remain	in	our	current	situation	and	decided	that	it	was	time	to
deliver	on	that	promise.	A	well-thought-out	and	reasonable	solution	would	instead	be	to	create	a	new	fork	of	Paper	(ModernPaper,	for	example)	while	maintaining	the	current	Paper	branch	compatible	with	the	Spigot	API.	Reasonable?	Are	you	paying	us	for	this	extra	effort	that	would	double,	if	not	triple,	the	amount	of	work	we're	doing?	A	large	part	of
the	reason	why	we	hard	forked	was	because	the	maintanance	over	the	top	of	spigot	was	becoming	increasingly	unbearable;	The	current	update	has	some	things	that	we	need	to	look	into	improving,	such	as	the	bus	factor	of	various	dependencies,	but	it	was	nice	to	be	able	to	actually	look	into	writing	API	for	stuff	that's	needed	going	forward.	This	was
only	going	to	increasingly	become	an	issue	as	mojang	starts	working	more	on	various	things,	such	as	making	it	possible	for	servers	to	define	custom	Items,	and	as	they	work	on	their	data	component	system,	something	which	spigot	seemingly	has	0	intent	of	actually	supporting	properly.	We're	only	planning	to	expose	more	features	towards	the	API	in
order	to	allow	them	to	do	things	that	require	API	breaks	in	order	to	pull	off,	such	as,	when	mojang	delivers	on	the	framework,	the	support	for	custom	items,	something	which	is	literally	impossible	to	handle	using	the	currently	supported	API	from	upstream.	Hangar	is	also	extremely	poorly	designed,	while	the	Spigot	website	is	a	benchmark	in	its	field;
everything	is	clear,	each	plugin	has	its	own	discussion	thread,	including	comments,	whereas	on	Hangar,	everything	is	decentralized;	we	don't	feel	like	we're	part	of	a	community,	unlike	on	the	Spigot	website	Hangar	is	generally	a	work	in	progress,	and	many	other	platforms	are	out	there,	as	noted.	There	is	also	places	for	feedback	on	suggestions	and
improvements,	though,	some	aspects,	like	commands,	are	a	bit	of	a	concern	more	in	terms	of	policy	(i.e.	do	we	try	to	manage	aspects	of	moderation	that	spigot	refuses	to	deal	with,	or,	do	we	just	leave	it	to	be	an	unmoderated	area	outside	of	stuff	we	are	morally/legally	required	to	deal	with).	I	do	not	know	a	single	developer	who	considers	Spigot's
resource	section	to	be	a	benchmark.	If	anything,	during	my	years	of	being	there,	I	saw	consistent	complaints	and	feature	requests	against	that	system,	which	Spigot	is	unable	to	fulfil.	it's	a	Forum	running	a	plugin	that	allows	people	to	list	stuff	and	doesn't	support	any	basic	feature	that	exists	within	the	rest	of	the	entire	ecosystem	that	devs	have	been
begging	for	for	years,	such	as	the	ability	to	have	teams	so	that	they	don't	have	to	share	account	passwords	if	they	want	somebody	else	to	be	able	to	publish	a	plugin,	efforts	on	the	search	tool	to	allow	people	to	find	stuff;	automated	access	for	plugin	devs	to	be	able	to	publish	to	the	site	using	more	standard	tooling,	and	other	means	of	being	able	to	poll
the	website	in	a	manner	which	doesn't	end	up	with	the	site	owner	sending	legal	threats	because	you	wanted	to	make	it	possible	for	somebody	to	query	the	website	using	a	well	designed	API.	Plus	ther's	no	activity	on	forums	.	There's	no	support	on	the	website,	but	it	redirects	to	the	Discord	pages	for	each	plugin,	except	that	Discord	doesn't	allow	you
to	have	more	than	100	servers	(except	for	those	who	can	afford	to	waste	their	money	on	Nitro...).	The	reality	is	that	forums	are	basically	dead;	this	has	been	a	long-standing	trend	on	the	wider	internet,	for	the	worse.	Between	growing	up,	meaning	that	I	no	longer	have	the	leisure	of	browsing	a	forum	all	day	as	I	did	10	years	ago,	and	the	fact	that
Discord	is	just	there,	it's	pretty	hard	for	many	to	justify	pursuing	the	forums	when	they	can	have	more	active	conversations	on	Discord.	Why?	Because	developers	are	bored	and	want	to	turn	a	1950s	car	into	a	post-2000s	prototype.	Bored?	The	situation	was	unmanageable.	We	were	unable	to	browse	our	patches	folder.	Merging	in	PRs	was	an	entire
bunch	of	operations	due	to	how	many	patches	we	were	trying	to	maintain	that	the	entire	process	of	merging	in	a	PR	was	an	entire	bunch	of	steps	in	which	often	resulted	in	moans	because	that	one	trivial	PR	you	merged	made	it	impossible	to	merge	in	this	other	PR	we	needed	without	another	half	an	hour	dedicated	to	this,	resulting	in	multiple	hour
dedicated	to	the	PR	queue	only	to	be	able	to	merge	in	a	handful	of	patches.	Because	developers	are	bored	and	want	to	turn	a	1950s	car	into	a	post-2000s	prototype.	All	we	want	is	for	our	servers	to	actually	work.	If	we	want	a	more	powerful	plugin	API,	we'll	move	to	other	forks.	Mojang	is	moving	forward,	more	so	these	days.	What	is	the	point	of
existing	as	a	project	whose	goal	is	to	improve	performance	and	expand	upon	API	if	we're	not	going	to	expand	upon	the	API	and	support	the	things	that	developers	ask	us	to	provide	API	for?	We	might	as	well	just	throw	the	towel	in,	archive	the	repo,	and	close	the	discord/forums.	Paper	forgets	where	it	comes	from,	its	origins,	and	what	made	its
existence	possible.	Paper	was	a	little	fork	maintained	by	a	group	of	people	because	they	found	it	fun	to	do	so.	We	continued	to	expand	over	the	years	because	we	added	features	and	an	API	that	people	wanted,	which	we	felt	would	be	worth	the	effort	to	maintain.	We	never	intended	to	get	big;	this	was	generally	just	a	fun	project	we	enjoyed	sinking
time	into,	wondering	if	one	day	we'd	ever	be	able	to	break	away	from	Spigot	and	start	working	on	the	things	we	wanted	to	do	and	that	plugin	developers	and	server	owners	wanted	us	to	do.	The	project	started	with	two	people	and	grew	as	people	wanted	a	place	where	they	could	work	on	things	spigot	had	no	interest	in	supporting,	we've	come	to	the
point	where	spigots	areas	of	"no	interestin	supporting"	pretty	much	covers	the	direction	that	mojang	was	steering	into	for	the	past	decade,	and	many	of	our	decisions	to	not	work	too	much	on	the	stuff	spigot	refused	to	support	has	consistently	bit	us.	Even	before	the	hard	fork,	we'd	started	to	lose	compatability	with	spigot	plugins	due	to	them	once	in	a
while	working	on	API	they'd	said	no	to	in	the	past,	resulting	in	many	occasions	where	we	had	to	refuse	to	do	the	thing	we	set	out	to	do	out	of	concern	that	spigot	would	do	something	that	would	break	our	ability	to	remain	compatible	with	them.	Reactions:	Abcik	A	lot	of	these	plugins	only	still	work	due	to	Spigots	attitude	towards	never	breaking
plugins	ever	(except	for	the	random	coin	toss	in	which	they	broke	API	in	manners	that	could	cause	duplication	issues	or	just	crash	servers	with	0	warning	mid-release	cycle),	to	the	degree	that	they	invested	the	effort	into	a	chonky	mechanism	which	rewrites	the	code	of	every	single	plugin	that	loads,	ever;	and	have	often	refused	to	expose	features	to
plugins	in	order	to	prioritise	legacy	plugins	over	being	able	to	do	basic	operations	like	query	the	biome	of	a	chunk.	They	finally	accepted	that	this	would	harm	their	ability	to	move	forward	and	eventually	began	working	on	some	of	the	things	the	developer	community	had	been	asking	them	to	do	for	a	decade.	The	bytecode	rewriting	stuff	is	sadly
something	the	team	has	decided	to	carry	on	with	going	forwards	in	order	to	let	devs	pretend	that	mojang	isn't	moving	the	ecosystem	forward.	At	the	time,	that	was	a	goal	we	considered	beneficial	for	both	the	community	and	ourselves.	In	good	faith,	we	cannot	refuse	to	move	forward	with	the	Minecraft	ecosystem.	We	either	adopt	Mojang's	efforts	to
improve	the	power	available	to	server	owners	or	give	up	and	close	shop.	We	have	consistently	talked	about	our	plans	to	break	away	from	spigot	for	years	now,	in	public,	there	is	no	tricking	here,	we	just	finally	decided	we	could	no	longer	remain	in	our	current	situation	and	decided	that	it	was	time	to	deliver	on	that	promise.	Reasonable?	Are	you
paying	us	for	this	extra	effort	that	would	double,	if	not	triple,	the	amount	of	work	we're	doing?	A	large	part	of	the	reason	why	we	hard	forked	was	because	the	maintanance	over	the	top	of	spigot	was	becoming	increasingly	unbearable;	The	current	update	has	some	things	that	we	need	to	look	into	improving,	such	as	the	bus	factor	of	various
dependencies,	but	it	was	nice	to	be	able	to	actually	look	into	writing	API	for	stuff	that's	needed	going	forward.	This	was	only	going	to	increasingly	become	an	issue	as	mojang	starts	working	more	on	various	things,	such	as	making	it	possible	for	servers	to	define	custom	Items,	and	as	they	work	on	their	data	component	system,	something	which	spigot
seemingly	has	0	intent	of	actually	supporting	properly.	We're	only	planning	to	expose	more	features	towards	the	API	in	order	to	allow	them	to	do	things	that	require	API	breaks	in	order	to	pull	off,	such	as,	when	mojang	delivers	on	the	framework,	the	support	for	custom	items,	something	which	is	literally	impossible	to	handle	using	the	currently
supported	API	from	upstream.	Hangar	is	generally	a	work	in	progress,	and	many	other	platforms	are	out	there,	as	noted.	There	is	also	places	for	feedback	on	suggestions	and	improvements,	though,	some	aspects,	like	commands,	are	a	bit	of	a	concern	more	in	terms	of	policy	(i.e.	do	we	try	to	manage	aspects	of	moderation	that	spigot	refuses	to	deal
with,	or,	do	we	just	leave	it	to	be	an	unmoderated	area	outside	of	stuff	we	are	morally/legally	required	to	deal	with).	I	do	not	know	a	single	developer	who	considers	Spigot's	resource	section	to	be	a	benchmark.	If	anything,	during	my	years	of	being	there,	I	saw	consistent	complaints	and	feature	requests	against	that	system,	which	Spigot	is	unable	to
fulfil.	it's	a	Forum	running	a	plugin	that	allows	people	to	list	stuff	and	doesn't	support	any	basic	feature	that	exists	within	the	rest	of	the	entire	ecosystem	that	devs	have	been	begging	for	for	years,	such	as	the	ability	to	have	teams	so	that	they	don't	have	to	share	account	passwords	if	they	want	somebody	else	to	be	able	to	publish	a	plugin,	efforts	on
the	search	tool	to	allow	people	to	find	stuff;	automated	access	for	plugin	devs	to	be	able	to	publish	to	the	site	using	more	standard	tooling,	and	other	means	of	being	able	to	poll	the	website	in	a	manner	which	doesn't	end	up	with	the	site	owner	sending	legal	threats	because	you	wanted	to	make	it	possible	for	somebody	to	query	the	website	using	a
well	designed	API.	The	reality	is	that	forums	are	basically	dead;	this	has	been	a	long-standing	trend	on	the	wider	internet,	for	the	worse.	Between	growing	up,	meaning	that	I	no	longer	have	the	leisure	of	browsing	a	forum	all	day	as	I	did	10	years	ago,	and	the	fact	that	Discord	is	just	there,	it's	pretty	hard	for	many	to	justify	pursuing	the	forums	when
they	can	have	more	active	conversations	on	Discord.	Bored?	The	situation	was	unmanageable.	We	were	unable	to	browse	our	patches	folder.	Merging	in	PRs	was	an	entire	bunch	of	operations	due	to	how	many	patches	we	were	trying	to	maintain	that	the	entire	process	of	merging	in	a	PR	was	an	entire	bunch	of	steps	in	which	often	resulted	in	moans
because	that	one	trivial	PR	you	merged	made	it	impossible	to	merge	in	this	other	PR	we	needed	without	another	half	an	hour	dedicated	to	this,	resulting	in	multiple	hour	dedicated	to	the	PR	queue	only	to	be	able	to	merge	in	a	handful	of	patches.	Mojang	is	moving	forward,	more	so	these	days.	What	is	the	point	of	existing	as	a	project	whose	goal	is	to
improve	performance	and	expand	upon	API	if	we're	not	going	to	expand	upon	the	API	and	support	the	things	that	developers	ask	us	to	provide	API	for?	We	might	as	well	just	throw	the	towel	in,	archive	the	repo,	and	close	the	discord/forums.	Paper	was	a	little	fork	maintained	by	a	group	of	people	because	they	found	it	fun	to	do	so.	We	continued	to
expand	over	the	years	because	we	added	features	and	an	API	that	people	wanted,	which	we	felt	would	be	worth	the	effort	to	maintain.	We	never	intended	to	get	big;	this	was	generally	just	a	fun	project	we	enjoyed	sinking	time	into,	wondering	if	one	day	we'd	ever	be	able	to	break	away	from	Spigot	and	start	working	on	the	things	we	wanted	to	do	and
that	plugin	developers	and	server	owners	wanted	us	to	do.	The	project	started	with	two	people	and	grew	as	people	wanted	a	place	where	they	could	work	on	things	spigot	had	no	interest	in	supporting,	we've	come	to	the	point	where	spigots	areas	of	"no	interestin	supporting"	pretty	much	covers	the	direction	that	mojang	was	steering	into	for	the	past
decade,	and	many	of	our	decisions	to	not	work	too	much	on	the	stuff	spigot	refused	to	support	has	consistently	bit	us.	Even	before	the	hard	fork,	we'd	started	to	lose	compatability	with	spigot	plugins	due	to	them	once	in	a	while	working	on	API	they'd	said	no	to	in	the	past,	resulting	in	many	occasions	where	we	had	to	refuse	to	do	the	thing	we	set	out
to	do	out	of	concern	that	spigot	would	do	something	that	would	break	our	ability	to	remain	compatible	with	them.	Thank	you	for	your	comprehensive	response	I	won't	bother	you	anymore;	I'll	see	what	the	future	holds...	Despite	my	concerns	and	criticisms,	I	thank	you	for	all	the	work	you've	done	over	the	years	on	Paper.	I	just	hope	I	can	continue	the
adventure	with	you.	Have	a	good	Sunday,	everyone!	Updates	to	Paper	do	not	have	any	sort	of	estimate	for	when	they	release,	ever.	Any	and	all	updates	will	arrive	when	they	are	ready,	and	the	only	thing	to	do	is	wait	for	them	patiently	along	with	everyone	else.	Reactions:	naive	and	TOWUK	Your	server	should	work	fine	for	Bedrock	1.21.70	players	if
the	server's	on	1.21.4	and	is	using	the	latest	build	of	Geyser.	There's	no	solution	yet	for	Java	players	on	1.21.5.	Your	server	should	work	fine	for	Bedrock	1.21.70	players	if	the	server's	on	1.21.4	and	is	using	the	latest	build	of	Geyser.	There's	no	solution	yet	for	Java	players	on	1.21.5.	No	I'm	having	the	same	issue.	I	tried	viaversion	and	it	didn't	work.	I
know	there's	a	spigot	1.21.5	out	but	I	don't	know	how	to	replace	my	server	with	that	one.	We	don't	recommend	running	Spigot,	especially	this	early	in	release	cycle.	Lots	of	potential	bugs	to	iron	out.	If	you	need	help	with	geyser,	see	geyser's	support.	For	viaversion,	see	viaversion's	support.	I	know	via	has	an	update	for	1.21.5,	but	can't	speak	for
geyser.	We	don't	recommend	running	Spigot,	especially	this	early	in	release	cycle.	Lots	of	potential	bugs	to	iron	out.	If	you	need	help	with	geyser,	see	geyser's	support.	For	viaversion,	see	viaversion's	support.	I	know	via	has	an	update	for	1.21.5,	but	can't	speak	for	geyser.	Don't	they	work	hand	in	hand?	ViaVersion	and	Geyser	are	separate	plugins.
Paper	produces	neither,	but	both	run	great	on	it.	ViaVersion	and	Geyser	are	separate	plugins.	Paper	produces	neither,	but	both	run	great	on	So	I'll	just	have	to	wait	till	paper	1.21.5	comes	out?	or	do	you	know	how	to	change	it	to	spigot	cause	I'm	already	running	it	on	there	for	performance.	ViaVersion	would	enable	1.21.5	players	to	play	on	your
server.	Geyser	would	enable	bedrock	players.	I	would	not	recommend	running	Spigot	instead	of	those	things,	but	if	you	wish	to	run	it	that	is	not	something	we	provide	support	for.	ViaVersion	has	jars	to	add	protocol	support	for	1.21.5,	however,	you	might	need	to	pay	for	the	early	releases;	Geyser	apparently	works	for	1.21.4,	however.	We	do	not
provide	support	for	server	software	that	isn't	ours,	noting	that	running	your	server	on	Spigot	might	cause	damage	to	existing	data	on	your	server	and	used	by	plugins,	you	would	really	be	better	off	waiting	until	Paper	has	releases,	rather	than	running	early	experimental	spigot	builds.	Thank	you,	I	just	messaged	bedrock	players	of	my	server	and
apologized	for	the	inconvenience.	While	you're	hear,	does	hydraulic	work?	If	you	don't	know	it's	a	plugin	that	allows	bedrock	players	to	use	mods.	We	do	not	produce	geyser	or	hydraulic.	You	should	ask	them	for	help	with	their	stuff.	Paper	1.21.4	+	ViaVersion	+	the	latest	build	of	Geyser	works	fine	for	me	for	1.21.70	players,	but	I	don't	think
ViaVersion	is	making	any	difference	since	it	doesn't	support	1.21.5	yet.	Not	sure	what's	going	on	for	you.	Paper	1.21.4	+	ViaVersion	+	the	latest	build	of	Geyser	works	fine	for	me	for	1.21.70	players,	but	I	don't	think	ViaVersion	is	making	any	difference	since	it	doesn't	support	1.21.5	yet.	Not	sure	what's	going	on	for	you.	Do	you	have	aditional	plugins?
ViaVersion	has	early	releases	for	1.21.5,	as	already	said.	Paper	1.21.4	+	ViaVersion	+	the	latest	build	of	Geyser	works	fine	for	me	for	1.21.70	players,	but	I	don't	think	ViaVersion	is	making	any	difference	since	it	doesn't	support	1.21.5	yet.	Not	sure	what's	going	on	for	you.	Are	you	also	talking	about	bedrock	players	on	console?	What?	I	was	asking	if
the	person	with	a	working	server	had	additional	plugins.	And	that	person	claimed	ViaVersion	doesn't	have	an	update.	Remember,	this	place	isn't	the	place	for	support	with	bedrock	clients	or	with	viaversion.	You	can	get	better	support	directly	from	those	folks!	And	that	person	claimed	ViaVersion	doesn't	have	an	update.	Remember,	this	place	isn't	the
place	for	support	with	bedrock	clients	or	with	viaversion.	You	can	get	better	support	directly	from	those	folks!	Oh,	i'm	just	confused	I	guess.	My	plugin	list:	BedWars-0.2.36.1.jar	CommandBlocks-v1.4.0.jar	CoreProtect-22.4.jar	EconomyShopGUI-6.11.1.jar	EssentialsX-2.21.0.jar	EssentialsXChat-2.21.0.jar	EssentialsXSpawn-2.21.0.jar	Geyser-Spigot.jar
LuckPerms-Bukkit-5.4.157.jar	PlaceholderAPI-2.11.6.jar	ProtocolLib.jar	PurpurExtras-1.34.5.jar	SkinsRestorer.jar	TAB	v5.0.7.jar	VaultUnlocked-2.9.0.jar	ViaBackwards-5.2.1.jar	ViaVersion-5.2.1.jar	VoidWorldGenerator-1.3.2.jar	floodgate-spigot.jar	multiverse-core-4.3.14.jar	multiverse-inventories-4.2.6.jar	multiverse-netherportals-4.2.3.jar	multiverse-
portals-4.2.3.jar	playeronlyplates-1.0.1-SNAPSHOT.jar	worldedit-bukkit-7.3.11.jar	worldguard-bukkit-7.0.13-dist.jar	I	also	have	MCXboxBroadcast	in	Geyser's	extension	folder.	Bedrock	PC/mobile/console	on	1.21.40-70	all	works	fine,	but	I	needed	the	MCXboxBroadcast	update	for	console	to	join.	On	it	specifies	that	1.21.40-70	works	fine	on	a	1.21.4
server.	Updates	to	Paper	do	not	have	any	sort	of	estimate	for	when	they	release,	ever.	Any	and	all	updates	will	arrive	when	they	are	ready,	and	the	only	thing	to	do	is	wait	for	them	patiently	along	with	everyone	else.	It	seems	you	are	a	"staff	member"?	Isn't	kindness	free	to	use?	A	new	user	asked	about	timing	of	release	without	being	demanding,	and
this	is	how	you	respond?	Saltiness	is	not	required.	I	realize	the	buzz	and	demands	made	around	version	releases	can	be	rude	and	taxing,	however,	this	isn't	the	case	in	this	instance.	I'm	a	new	user	to	Paper	and	your	forum,	and	I	wouldn't	expect	to	be	responded	to	like	this.	How	'bout	make	mention	of	a	reasonable	expectation	of	time	for	release	but
that	it	isn't	something	that	can	be	guaranteed,	or	maybe	how	long	the	last	updates	took	to	make	available?	That	would	be	useful	for	a	new	user	to	hear.	It	seems	you	are	a	"staff	member"?	Isn't	kindness	free	to	use?	A	new	user	asked	about	timing	of	release	without	being	demanding,	and	this	is	how	you	respond?	Saltiness	is	not	required.	I	realize	the
buzz	and	demands	made	around	version	releases	can	be	rude	and	taxing,	however,	this	isn't	the	case	in	this	instance.	I'm	a	new	user	to	Paper	and	your	forum,	and	I	wouldn't	expect	to	be	responded	to	like	this.	How	'bout	make	mention	of	a	reasonable	expectation	of	time	for	release	but	that	it	isn't	something	that	can	be	guaranteed,	or	maybe	how	long
the	last	updates	took	to	make	available?	That	would	be	useful	for	a	new	user	to	hear.	On	our	Discord,	we	have	used	a	bot	to	repeat	this	message	409	times	since	1.21.5	has	come	out.	I	appreciate	your	concern,	but	we	have	found	this	message	best	communicates	expectations	in	a	concise	manner	(users	tend	to	stop	reading	by	the	3rd	sentence)	and	is
easier	than	writing	up	a	fresh	response	each	time.	As	for	your	thoughts	on	reasonable	expectations:	This	project	is	run	by	volunteers,	and	their	time	is	variable.	Minecraft	updates	can	greatly	vary	in	terms	of	complexity,	both	in	terms	of	actual	internal	changes	and	in	terms	of	changes	we	have	to	make	to	adapt	within	our	API.	We	just	recently
migrated	our	tooling	to	be	independent	of	Spigot	(see	the	hard	fork	announcement)	and	are	working	out	the	kinks	in	our	setup.	As	a	result	of	these	various	factors,	it	is	never	possible	to	provide	an	ETA	(and	especially	with	the	current	situation).	Updates	have	been	as	quick	as	pretty	much	same-day	and	as	long	as	many,	many	weeks.	Your	patience	is
appreciated.	Reactions:	EverPilgrim	that	is	just	a	prewritten	bot	rely	we	have	used	for	ages	and	not	ones	has	somebody	complained	in	the	thousands	of	times	it	was	used.	we	will	never	give	any	indication	of	time,	ever,	since	a)	every	update	is	different,	so	its	impossible	to	predict	based	on	last	updates	and	b)	people	would	complain	even	more	if	that
estimate	wasn't	accurate.	just	wait	patiently	like	everybody	else.	an	announcement	will	be	made	when	it	is	available.	I'm	excited,	too!	I	hope	it's	out	soon.	Page	2	My	plugin	list:	BedWars-0.2.36.1.jar	CommandBlocks-v1.4.0.jar	CoreProtect-22.4.jar	EconomyShopGUI-6.11.1.jar	EssentialsX-2.21.0.jar	EssentialsXChat-2.21.0.jar	EssentialsXSpawn-
2.21.0.jar	Geyser-Spigot.jar	LuckPerms-Bukkit-5.4.157.jar	PlaceholderAPI-2.11.6.jar	ProtocolLib.jar	PurpurExtras-1.34.5.jar	SkinsRestorer.jar	TAB	v5.0.7.jar	VaultUnlocked-2.9.0.jar	ViaBackwards-5.2.1.jar	ViaVersion-5.2.1.jar	VoidWorldGenerator-1.3.2.jar	floodgate-spigot.jar	multiverse-core-4.3.14.jar	multiverse-inventories-4.2.6.jar	multiverse-
netherportals-4.2.3.jar	multiverse-portals-4.2.3.jar	playeronlyplates-1.0.1-SNAPSHOT.jar	worldedit-bukkit-7.3.11.jar	worldguard-bukkit-7.0.13-dist.jar	I	also	have	MCXboxBroadcast	in	Geyser's	extension	folder.	Bedrock	PC/mobile/console	on	1.21.40-70	all	works	fine,	but	I	needed	the	MCXboxBroadcast	update	for	console	to	join.	On	it	specifies	that
1.21.40-70	works	fine	on	a	1.21.4	server.	Hi!	So	sorry	to	ask	and	this	might	be	slightly	off	topic,	but	how	did	you	get	CommandBlocks	to	work?	I	cannot	use	it	for	the	life	of	me	and	there	are	no	tutorials.	paper	wake	up	the	new	version	is	here	A	User	Who	Deleted	Their	Own	Post	said:	It's	a	good	thing	customer	service	isn't	needed	for	your	free
"service".	You're	work	seems	to	help	performance	of	the	original	Minecraft	server,	so	I'll	keep	using	it.	But	if	ever	asked,	I'll	have	to	say	that	the	PaperMC	team	are	jerks.	Just	use	their	work	and	don't	expect	anything	polite	from	them.	Ever.	I'm	proud	to	say	that	the	team	is	made	up	of	incredibly	kind	people.	I	don't	know	where	you	are	getting	this
jerk	interpretation	from,	but	it's	sad	to	hear.	The	amount	of	hours	the	team	contributes	every	single	day,	helping	users	and	developers	on	our	Discord	(our	most	active	platform	for	support),	is	unreal.	And	they	do	it	while	being	friendly	and	welcoming	of	anyone	from	newbies	to	highly	experienced	users/devs,	because	they	are	good	people.	I	hope	you
join	us	on	Discord	and	see	for	yourself.	Reactions:	Entity_616	where	can	we	get	information	about	the	advancement	of	the	update?	We	post	updates	when	we	have	them	on	our	Discord	server	in	the	updates	channel,	or	you	can	watch	commits	as	they	come	in	on	GitHub	the	udapte	is	relaesed	on	aternos	thank	you	alot	Stable	Paper	and	Velocity	1.21
builds	have	been	released!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.21,	you	cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update:If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	spark	profiler	inclusion	in	Paper​Thanks	to	riley	and
Luck,	Paper	now	bundles	spark	as	its	main	profiler	for	diagnosing	causes	of	lag.	Timings	is	now	disabled	by	default	and	will	be	entirely	removed	at	a	later	date,	possibly	with	1.22.	As	a	developer,	please	make	sure	you	remove	any	custom	Timing	uses	by	then.	You	can	see	our	docs	page	as	well	as	the	GitHub	Discussions	page	for	more	details	and	also
provide	feedback	there.	Configuration	changes​The	disable-teleportation-suffocation-check	config	option	is	now	gone,	as	this	check	no	longer	exists	in	vanilla.	We	have	also	changed	a	number	of	default	configuration	values	to	improve	the	gameplay	experience:	merge-radius.exp:	3->-1(disabled).	vanilla	has	its	own	less	aggressive	merging	logic,	but
generally	xp	orbs	were	not	a	large	performance	concern;	otherwise	we	might	instead	offer	new	options	to	change	vanilla’s	merge	logic	merge-radius.item:	2.5->0.5,	reflecting	the	vanilla	default,	since	the	increased	value	was	often	seen	as	disruptive.	If	you	expect	large	number	of	the	same	item	types	to	be	lying	around	close	to	one	another,	you	can
increase	this	again	entity-activation-range.raider:	48->64	Various	values	under	entity-tracking-range	have	been	increased	to	make	sure	you	can	actually	see	monsters	and	players	attacking	you	from	farther	away	(e.g.	no	longer	running	into	invisible	ghasts	shooting	at	you	in	the	nether.	Note	that	this	does	not	affect	ticking,	only	whether	they	are	sent
to	a	player)	players:	48->128	animals:	48->96	monsters:	48->96	misc:	32->96	Slower	than	usual	startup​In	1.20.5/6,	Spigot	has	made	additions	to	their	plugin	rewriting	that	resulted	in	poor	startup	performance,	adding	multiple	seconds	to	each	individual	larger	plugin.	This	has	unfortunately	been	made	slightly	worse	again	in	1.21.¹	We	have	already
mildly	improved	on	it	and	are	working	on	reducing	it	by	as	much	as	possible,	but	in	the	meantime	you	can	work	around	it	by	disabling	the	cross-version	compatibility	measures	by	either	optionally	using	Paper's	plugin	loader	as	a	developer,	or	by	using	the	paper.disableOldApiSupport	startup	flag.	However,	the	flag	will	only	work	if	all	of	your	plugins
are	built	against	the	latest	API	version.	'Done'-message	changes​The	final	Done	(7.392s)!	For	help,	type	"help"	message	now	shows	the	time	from	when	the	Minecraft	server	initially	bootstrapped.	Previously,	it	was	in	a	kind	of	weird	spot	where	it	only	tracked	world	loading,	plugins,	and	a	few	other	parts	of	server	startup.	We	have	also	reinstated
vanilla's	original	Done	preparing	level	message	next	to	the	total	startup	time.	The	.paper-remapped	directory​As	per	the	last	announcement,	we	now	use	Mojang	mappings	at	runtime	and	thus	have	to	remap	plugins	that	might	still	be	using	Spigot's	mess	of	mappings.	The	.paper-remapped	folder	in	the	plugin	directory	caused	a	bit	of	confusion,	so
here's	what	it	does:	It	stores	the	remapped	plugin	jars	as	well	as	a	cached	server	jar,	so	that	all	of	these	don't	have	to	be	processed	during	every	single	server	startup.	The	folder	is	automatically	cleaned	up,	so	you	don't	need	to	(and	generally	shouldn't)	touch	it.	For	developers	In	case	you	skipped	the	1.20.5/6	update,	make	sure	to	read	its
announcement	on	Mojang	mappings	use	at	runtime	and	our	new	Brigadier	command	API.	Attribute	modifiers​Attribute	modifiers	no	longer	have	a	name	and	uuid	and	instead	make	use	of	a	single	string	key	as	its	identifier.	The	old	constructors	and	methods	are	unusable	as	of	now,	only	the	Paper-added	get/removeModifier	via	uuids	have	had	a
temporary	compatibility	measure	put	in.	If	you	are	using	this	API,	make	sure	to	move	to	their	replacements	as	soon	as	possible.	Removed	chunk	gen	delegation	and	regeneration	methods​Our	vanilla	chunk	gen	delegation	API	already	broke	with	almost	every	major	update	and	this	one	is	no	exceptions.	Together	with	the	regenerateChunk	method,	their
implementation	is	no	longer	feasible	due	to	how	hard-coupled	and	stateful	a	lot	of	the	handling	has	become.	The	only	way	to	properly	regenerate	chunks	with	structures	and	everything	else	attached	is	to	generate	a	world	with	the	same	seeds	and	to	copy	over	those	chunks.	ItemStack	and	ItemMeta	(again)​The	ItemStack	class	within	the	API	module	no
longer	holds	its	method	implementations	directly,	but	instead	always	redirects	to	a	held	internal	(Craft)ItemStack	instance.	This	won't	matter	to	most	people,	but	it	means	that	you	can	no	longer	run	unit	tests	using	the	API-only	ItemStack.	If	this	affects	you	and	you	aren't	already	using	a	Minecraft	testing	framework,	we	recommend	using	something
like	Mockbukkit	to	mock	a	running	server	instance.	We	have	added	ItemMeta#hasDamageValue	to	check	whether	the	damage	item	data	component	has	been	added	to	an	item.	hasDamage	will	still	return	whether	there	is	a	non-0	amount	of	damage.	For	resetting	damage,	we	recommend	using	resetDamage	instead	of	setting	it	to	0	to	improve	item
comparison.	There's	still	other	issues	thanks	to	ItemMeta	clashing	hard	with	Minecraft's	new	item	data	storage,	including	unfortunate	but	not	really	solvable	behavioral	breaks	to	item	flags.	Right	now,	we're	still	working	on	our	improved	item	data	component	API	in	the	background	and	will	let	you	know	more	once	it	has	been	merged.	Other	changes​
End	gateway	teleportation	cancellation	doesn't	reset	the	portal	cooldown,	so	you	should	use	EntityPortalEnterEvent	with	PortalType.END_GATEWAY	to	check	for	initial	entries	Projectile#getWeapon	is	now	nullable	Opportunity	to	change	the	git	commit	author	details	in	Paper	commits​If	you	have	previously	contributed	to	our	main	Paper	repository	on
GitHub	and	want	the	email	or	name	that	was	used	on	that	commit	to	be	changed,	you	may	use	the	modmail	command	on	our	Discord	to	tell	us	the	new	details.	As	per	our	planned	repository	restructure	in	the	future,	the	current	git	history	will	be	overridden,	so	we	thought	we	might	as	well	fix	the	details	for	anyone	that	needs	it.	¹	Here	are	a	few
examples	(results	will	vary	depending	on	hardware	and	OS),	which	will	quickly	add	up	the	more	plugins	you	have:	ViaVersion	takes	over	two	seconds	longer	to	load	(from	a	few	hundred	ms	to	2.5	seconds)	WorldEdit	takes	two	and	a	half	seconds	longer	(from	about	1.5	to	4	seconds)	CoreProtect	takes	a	second	and	a	half	longer	(on	a	clean	setup	with
otherwise	no	measurable	load	time	at	all	if	rewriting	is	disabled)	Last	edited	by	a	moderator:	Jul	20,	2024	Reactions:	cat,	ysl3000,	LoJoSho	and	1	other	person	Messages	27	Reaction	score	150	Points	3	Page	2	Stable	Paper	and	Velocity	1.21	builds	have	been	released!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.21,
you	cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update:If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	spark	profiler	inclusion	in	Paper​Thanks	to	riley	and	Luck,	Paper	now	bundles	spark	as	its	main	profiler	for	diagnosing	causes	of	lag.	Timings	is	now	disabled	by
default	and	will	be	entirely	removed	at	a	later	date,	possibly	with	1.22.	As	a	developer,	please	make	sure	you	remove	any	custom	Timing	uses	by	then.	You	can	see	our	docs	page	as	well	as	the	GitHub	Discussions	page	for	more	details	and	also	provide	feedback	there.	Configuration	changes​The	disable-teleportation-suffocation-check	config	option	is
now	gone,	as	this	check	no	longer	exists	in	vanilla.	We	have	also	changed	a	number	of	default	configuration	values	to	improve	the	gameplay	experience:	merge-radius.exp:	3->-1(disabled).	vanilla	has	its	own	less	aggressive	merging	logic,	but	generally	xp	orbs	were	not	a	large	performance	concern;	otherwise	we	might	instead	offer	new	options	to
change	vanilla’s	merge	logic	merge-radius.item:	2.5->0.5,	reflecting	the	vanilla	default,	since	the	increased	value	was	often	seen	as	disruptive.	If	you	expect	large	number	of	the	same	item	types	to	be	lying	around	close	to	one	another,	you	can	increase	this	again	entity-activation-range.raider:	48->64	Various	values	under	entity-tracking-range	have
been	increased	to	make	sure	you	can	actually	see	monsters	and	players	attacking	you	from	farther	away	(e.g.	no	longer	running	into	invisible	ghasts	shooting	at	you	in	the	nether.	Note	that	this	does	not	affect	ticking,	only	whether	they	are	sent	to	a	player)	players:	48->128	animals:	48->96	monsters:	48->96	misc:	32->96	Slower	than	usual	startup​In
1.20.5/6,	Spigot	has	made	additions	to	their	plugin	rewriting	that	resulted	in	poor	startup	performance,	adding	multiple	seconds	to	each	individual	larger	plugin.	This	has	unfortunately	been	made	slightly	worse	again	in	1.21.¹	We	have	already	mildly	improved	on	it	and	are	working	on	reducing	it	by	as	much	as	possible,	but	in	the	meantime	you	can
work	around	it	by	disabling	the	cross-version	compatibility	measures	by	either	optionally	using	Paper's	plugin	loader	as	a	developer,	or	by	using	the	paper.disableOldApiSupport	startup	flag.	However,	the	flag	will	only	work	if	all	of	your	plugins	are	built	against	the	latest	API	version.	'Done'-message	changes​The	final	Done	(7.392s)!	For	help,	type
"help"	message	now	shows	the	time	from	when	the	Minecraft	server	initially	bootstrapped.	Previously,	it	was	in	a	kind	of	weird	spot	where	it	only	tracked	world	loading,	plugins,	and	a	few	other	parts	of	server	startup.	We	have	also	reinstated	vanilla's	original	Done	preparing	level	message	next	to	the	total	startup	time.	The	.paper-remapped	directory​
As	per	the	last	announcement,	we	now	use	Mojang	mappings	at	runtime	and	thus	have	to	remap	plugins	that	might	still	be	using	Spigot's	mess	of	mappings.	The	.paper-remapped	folder	in	the	plugin	directory	caused	a	bit	of	confusion,	so	here's	what	it	does:	It	stores	the	remapped	plugin	jars	as	well	as	a	cached	server	jar,	so	that	all	of	these	don't
have	to	be	processed	during	every	single	server	startup.	The	folder	is	automatically	cleaned	up,	so	you	don't	need	to	(and	generally	shouldn't)	touch	it.	For	developers	In	case	you	skipped	the	1.20.5/6	update,	make	sure	to	read	its	announcement	on	Mojang	mappings	use	at	runtime	and	our	new	Brigadier	command	API.	Attribute	modifiers​Attribute
modifiers	no	longer	have	a	name	and	uuid	and	instead	make	use	of	a	single	string	key	as	its	identifier.	The	old	constructors	and	methods	are	unusable	as	of	now,	only	the	Paper-added	get/removeModifier	via	uuids	have	had	a	temporary	compatibility	measure	put	in.	If	you	are	using	this	API,	make	sure	to	move	to	their	replacements	as	soon	as	possible.
Removed	chunk	gen	delegation	and	regeneration	methods​Our	vanilla	chunk	gen	delegation	API	already	broke	with	almost	every	major	update	and	this	one	is	no	exceptions.	Together	with	the	regenerateChunk	method,	their	implementation	is	no	longer	feasible	due	to	how	hard-coupled	and	stateful	a	lot	of	the	handling	has	become.	The	only	way	to
properly	regenerate	chunks	with	structures	and	everything	else	attached	is	to	generate	a	world	with	the	same	seeds	and	to	copy	over	those	chunks.	ItemStack	and	ItemMeta	(again)​The	ItemStack	class	within	the	API	module	no	longer	holds	its	method	implementations	directly,	but	instead	always	redirects	to	a	held	internal	(Craft)ItemStack	instance.
This	won't	matter	to	most	people,	but	it	means	that	you	can	no	longer	run	unit	tests	using	the	API-only	ItemStack.	If	this	affects	you	and	you	aren't	already	using	a	Minecraft	testing	framework,	we	recommend	using	something	like	Mockbukkit	to	mock	a	running	server	instance.	We	have	added	ItemMeta#hasDamageValue	to	check	whether	the
damage	item	data	component	has	been	added	to	an	item.	hasDamage	will	still	return	whether	there	is	a	non-0	amount	of	damage.	For	resetting	damage,	we	recommend	using	resetDamage	instead	of	setting	it	to	0	to	improve	item	comparison.	There's	still	other	issues	thanks	to	ItemMeta	clashing	hard	with	Minecraft's	new	item	data	storage,	including
unfortunate	but	not	really	solvable	behavioral	breaks	to	item	flags.	Right	now,	we're	still	working	on	our	improved	item	data	component	API	in	the	background	and	will	let	you	know	more	once	it	has	been	merged.	Other	changes​	End	gateway	teleportation	cancellation	doesn't	reset	the	portal	cooldown,	so	you	should	use	EntityPortalEnterEvent	with
PortalType.END_GATEWAY	to	check	for	initial	entries	Projectile#getWeapon	is	now	nullable	Opportunity	to	change	the	git	commit	author	details	in	Paper	commits​If	you	have	previously	contributed	to	our	main	Paper	repository	on	GitHub	and	want	the	email	or	name	that	was	used	on	that	commit	to	be	changed,	you	may	use	the	modmail	command	on
our	Discord	to	tell	us	the	new	details.	As	per	our	planned	repository	restructure	in	the	future,	the	current	git	history	will	be	overridden,	so	we	thought	we	might	as	well	fix	the	details	for	anyone	that	needs	it.	¹	Here	are	a	few	examples	(results	will	vary	depending	on	hardware	and	OS),	which	will	quickly	add	up	the	more	plugins	you	have:	ViaVersion
takes	over	two	seconds	longer	to	load	(from	a	few	hundred	ms	to	2.5	seconds)	WorldEdit	takes	two	and	a	half	seconds	longer	(from	about	1.5	to	4	seconds)	CoreProtect	takes	a	second	and	a	half	longer	(on	a	clean	setup	with	otherwise	no	measurable	load	time	at	all	if	rewriting	is	disabled)	Last	edited	by	a	moderator:	Jul	20,	2024	Reactions:	cat,
ysl3000,	LoJoSho	and	1	other	person	Messages	27	Reaction	score	150	Points	3	Page	3	Stable	Paper	and	Velocity	1.21	builds	have	been	released!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.21,	you	cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update:If	you'd	like	to
support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	spark	profiler	inclusion	in	Paper​Thanks	to	riley	and	Luck,	Paper	now	bundles	spark	as	its	main	profiler	for	diagnosing	causes	of	lag.	Timings	is	now	disabled	by	default	and	will	be	entirely	removed	at	a	later	date,	possibly	with	1.22.	As	a	developer,	please	make	sure	you	remove	any
custom	Timing	uses	by	then.	You	can	see	our	docs	page	as	well	as	the	GitHub	Discussions	page	for	more	details	and	also	provide	feedback	there.	Configuration	changes​The	disable-teleportation-suffocation-check	config	option	is	now	gone,	as	this	check	no	longer	exists	in	vanilla.	We	have	also	changed	a	number	of	default	configuration	values	to
improve	the	gameplay	experience:	merge-radius.exp:	3->-1(disabled).	vanilla	has	its	own	less	aggressive	merging	logic,	but	generally	xp	orbs	were	not	a	large	performance	concern;	otherwise	we	might	instead	offer	new	options	to	change	vanilla’s	merge	logic	merge-radius.item:	2.5->0.5,	reflecting	the	vanilla	default,	since	the	increased	value	was
often	seen	as	disruptive.	If	you	expect	large	number	of	the	same	item	types	to	be	lying	around	close	to	one	another,	you	can	increase	this	again	entity-activation-range.raider:	48->64	Various	values	under	entity-tracking-range	have	been	increased	to	make	sure	you	can	actually	see	monsters	and	players	attacking	you	from	farther	away	(e.g.	no	longer
running	into	invisible	ghasts	shooting	at	you	in	the	nether.	Note	that	this	does	not	affect	ticking,	only	whether	they	are	sent	to	a	player)	players:	48->128	animals:	48->96	monsters:	48->96	misc:	32->96	Slower	than	usual	startup​In	1.20.5/6,	Spigot	has	made	additions	to	their	plugin	rewriting	that	resulted	in	poor	startup	performance,	adding	multiple
seconds	to	each	individual	larger	plugin.	This	has	unfortunately	been	made	slightly	worse	again	in	1.21.¹	We	have	already	mildly	improved	on	it	and	are	working	on	reducing	it	by	as	much	as	possible,	but	in	the	meantime	you	can	work	around	it	by	disabling	the	cross-version	compatibility	measures	by	either	optionally	using	Paper's	plugin	loader	as	a
developer,	or	by	using	the	paper.disableOldApiSupport	startup	flag.	However,	the	flag	will	only	work	if	all	of	your	plugins	are	built	against	the	latest	API	version.	'Done'-message	changes​The	final	Done	(7.392s)!	For	help,	type	"help"	message	now	shows	the	time	from	when	the	Minecraft	server	initially	bootstrapped.	Previously,	it	was	in	a	kind	of
weird	spot	where	it	only	tracked	world	loading,	plugins,	and	a	few	other	parts	of	server	startup.	We	have	also	reinstated	vanilla's	original	Done	preparing	level	message	next	to	the	total	startup	time.	The	.paper-remapped	directory​As	per	the	last	announcement,	we	now	use	Mojang	mappings	at	runtime	and	thus	have	to	remap	plugins	that	might	still
be	using	Spigot's	mess	of	mappings.	The	.paper-remapped	folder	in	the	plugin	directory	caused	a	bit	of	confusion,	so	here's	what	it	does:	It	stores	the	remapped	plugin	jars	as	well	as	a	cached	server	jar,	so	that	all	of	these	don't	have	to	be	processed	during	every	single	server	startup.	The	folder	is	automatically	cleaned	up,	so	you	don't	need	to	(and
generally	shouldn't)	touch	it.	For	developers	In	case	you	skipped	the	1.20.5/6	update,	make	sure	to	read	its	announcement	on	Mojang	mappings	use	at	runtime	and	our	new	Brigadier	command	API.	Attribute	modifiers​Attribute	modifiers	no	longer	have	a	name	and	uuid	and	instead	make	use	of	a	single	string	key	as	its	identifier.	The	old	constructors
and	methods	are	unusable	as	of	now,	only	the	Paper-added	get/removeModifier	via	uuids	have	had	a	temporary	compatibility	measure	put	in.	If	you	are	using	this	API,	make	sure	to	move	to	their	replacements	as	soon	as	possible.	Removed	chunk	gen	delegation	and	regeneration	methods​Our	vanilla	chunk	gen	delegation	API	already	broke	with	almost
every	major	update	and	this	one	is	no	exceptions.	Together	with	the	regenerateChunk	method,	their	implementation	is	no	longer	feasible	due	to	how	hard-coupled	and	stateful	a	lot	of	the	handling	has	become.	The	only	way	to	properly	regenerate	chunks	with	structures	and	everything	else	attached	is	to	generate	a	world	with	the	same	seeds	and	to
copy	over	those	chunks.	ItemStack	and	ItemMeta	(again)​The	ItemStack	class	within	the	API	module	no	longer	holds	its	method	implementations	directly,	but	instead	always	redirects	to	a	held	internal	(Craft)ItemStack	instance.	This	won't	matter	to	most	people,	but	it	means	that	you	can	no	longer	run	unit	tests	using	the	API-only	ItemStack.	If	this
affects	you	and	you	aren't	already	using	a	Minecraft	testing	framework,	we	recommend	using	something	like	Mockbukkit	to	mock	a	running	server	instance.	We	have	added	ItemMeta#hasDamageValue	to	check	whether	the	damage	item	data	component	has	been	added	to	an	item.	hasDamage	will	still	return	whether	there	is	a	non-0	amount	of
damage.	For	resetting	damage,	we	recommend	using	resetDamage	instead	of	setting	it	to	0	to	improve	item	comparison.	There's	still	other	issues	thanks	to	ItemMeta	clashing	hard	with	Minecraft's	new	item	data	storage,	including	unfortunate	but	not	really	solvable	behavioral	breaks	to	item	flags.	Right	now,	we're	still	working	on	our	improved	item
data	component	API	in	the	background	and	will	let	you	know	more	once	it	has	been	merged.	Other	changes​	End	gateway	teleportation	cancellation	doesn't	reset	the	portal	cooldown,	so	you	should	use	EntityPortalEnterEvent	with	PortalType.END_GATEWAY	to	check	for	initial	entries	Projectile#getWeapon	is	now	nullable	Opportunity	to	change	the
git	commit	author	details	in	Paper	commits​If	you	have	previously	contributed	to	our	main	Paper	repository	on	GitHub	and	want	the	email	or	name	that	was	used	on	that	commit	to	be	changed,	you	may	use	the	modmail	command	on	our	Discord	to	tell	us	the	new	details.	As	per	our	planned	repository	restructure	in	the	future,	the	current	git	history	will
be	overridden,	so	we	thought	we	might	as	well	fix	the	details	for	anyone	that	needs	it.	¹	Here	are	a	few	examples	(results	will	vary	depending	on	hardware	and	OS),	which	will	quickly	add	up	the	more	plugins	you	have:	ViaVersion	takes	over	two	seconds	longer	to	load	(from	a	few	hundred	ms	to	2.5	seconds)	WorldEdit	takes	two	and	a	half	seconds
longer	(from	about	1.5	to	4	seconds)	CoreProtect	takes	a	second	and	a	half	longer	(on	a	clean	setup	with	otherwise	no	measurable	load	time	at	all	if	rewriting	is	disabled)	Last	edited	by	a	moderator:	Jul	20,	2024	Reactions:	cat,	ysl3000,	LoJoSho	and	1	other	person	Messages	27	Reaction	score	150	Points	3	Known	Issues	None!	All	known	issues	have
been	fixed.	Please	report	new	issues	on	github	Previous	issues	(fixed)	Spoiler:	Does	not	work	for	all	dupers	Currently	only	this	type	of	sand	duper	(pictured)	can	work	with	this	plugin.	This	is	most	sand	duper,	including	traditional	anvil	and	dragon	egg	duper.	Sand	duper	using	cobble	wall	or	boats	will	not	work.	I	do	not	have	good	way	to	detect	them,	I
ask	paper	developer	and	they	are	not	sure	either	but	if	you	have	idea	(NMS	OK)	please	tell	me	or	submit	pull	request.	I	have	tried	very	hard	but	I	am	not	sure	it	is	possible	without	bootstrap	for	mixin	or	other	class	transformation.	Last	edited	by	a	moderator:	Feb	13,	2022	hey.	this	is	great.	one	tiny	problem	I	had	was	that	it	kept	deleting	my	pistons
that	were	under	the	end	portal.	i	don't	know	how	to	fix	it.	hey.	this	is	great.	one	tiny	problem	I	had	was	that	it	kept	deleting	my	pistons	that	were	under	the	end	portal.	i	don't	know	how	to	fix	it.	This	isn't	something	that	gravitycontrol	will	cause.	It	does	not	delete	or	overwrite	any	blocks.	Please	upload	a	screenshot/schematic/world	download	for
replication	of	this	issue.	Does	this	work	in	1.19.2?	It's	been	a	hot	minute	since	the	last	post,	but	here	we	are!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.21.7,	you	cannot	downgrade	back	to	a	lower	version!	We	can	also	give	you	a	pinky	promise	that	it	won't	take	this	long	to	exit	the	experimental	phase	again	and	we
have	already	addressed	this	inflexibility	in	build	channels	-	more	on	below	and	on	our	Discord.	We	would	like	to	thank	everyone	that	worked	on	this	update:If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	Among	other	changes	and	the	new	V3	of	our	downloads	API,	its	release	channels	have	changed	to:	alpha,	beta,
stable,	recommended.	alpha:	Equivalent	to	the	prior	experimental	label	beta:	New	middle-point	for	builds	that	aren't	entirely	unstable,	but	partially	unfinished	(such	as	missing	config	options,	or	as	with	the	long	1.21.5	phase,	missing	datafixer	changes)	stable:	Equivalent	to	the	prior	default	label	-	always	make	sure	you	stay	up-to-date	with	new	builds
here,	as	important	fixes	and	changes	continue	being	pushed	recommended:	Unused	in	Paper,	but	currently	used	for	Velocity	releases.	If	this	ever	changes,	we	will	announce	it	beforehand	Time	and	time	again,	issues	in	old	world	upgrade	code	are	found,	with	fairly	important	issues	having	been	fixed	by	Mojang	or	Paper	in	the	recent	versions.	If	you
use	the	force-upgrade	startup	flag,	you	lose	out	on	fixes	from	future	versions	given	it	forcefully	loads	and	upgrades	all	worlds	and	entities.	Only	if	you	are	updating	from	a	version	before	1.13,	force-upgrading	can	save	some	performance	of	the	more	expensive	conversions,	in	that	case	the	safer	option	is	to	force-upgrade	on	1.21.7	Paper	(!),	but	you
should	otherwise	never	force	upgrade	without	a	specific	reason.	For	many	years,	the	Bukkit	reload	mechanic	has	been	unofficially	deprecated,	with	big	warnings	whenever	some	triggers	it	via	/reload	or	a	method	in	the	API.	We	are	officially	deprecating	it,	to	be	removed	at	a	later	time.	The	/reload	command	will	now	point	to	the	/minecraft:reload
command,	a	reload	mechanic	that	is	and	will	stay	supported,	as	it's	a	Vanilla	mechanic.	Users	should	be	stopping	and	starting	the	server	when	they	make	changes	that	require	a	restart.	Developers	should	be	using	hot	reloading,	or	doing	actual	restarts	as	well.	For	guidance	on	how	to	hotswap,	see	the	pinned	messages	in	our	paper-dev	Discord
channel.	For	developers	The	use	of	PlayerLoginEvent	is	now	deprecated.	This	change	has	been	made	to	allow	us	to	start	developing	API	for	the	Configuration	Phase	in	Minecraft.	This	most	notably	allows	for	dialoges	to	be	sent	to	the	player	before	they	join	the	game,	or	for	resource	packs	to	be	sent	before	as	well.	This	is	an	early	warning.	While
PlayerLoginEvent	will	remain	available	for	now,	breaking	changes	may	be	introduced	in	the	future.	Plugins	relying	on	this	event	should	begin	migrating	as	soon	as	possible.	Please	migrate	to	the	following	events	based	on	your	needs:	PlayerConnectionValidateLoginEvent	This	should	be	used	when	wanting	to	control	if	a	player	should	be	able	to	join
the	game.	Essentialy,	any	prevention	of	the	player	joining	logic	that	was	previously	done	in	the	PlayerLoginEvent.	Note	that	this	is	ran	two	times,	first	when	logging	in,	and	then	when	exiting	the	configuration	phase.	So,	you	do	not	have	access	to	a	Player	entity,	only	a	PlayerProfile.	PlayerServerFullCheckEvent	A	common	use	of	the	PlayerLoginEvent
was	to	allow	players	to	join	the	server	even	if	it	was	full,	this	event	allows	you	to	override	the	fullness	check	for	each	player.	The	configuration	phase	has	been	added	between	logging	into	a	server	and	fully	joining	a	world.	Here,	server	data,	including	tags	and	custom	registry	elements	are	sent	to	the	client.	It	is	in	this	phase	that	you	send	custom	data
to	a	client	or	where	you	an	apply	a	resource	pack	before	they	exit	the	loading	screen.	On	top	of	that,	you	can	throw	a	player	back	into	the	configuration	phase	using	PlayerGameConnection#reenterConfiguration	and	PlayerConfigurationConnection#completeReconfiguration	PlayerConnectionInitialConfigureEvent	(when	joining	initially)
AsyncPlayerConnectionConfigureEvent	PlayerConnectionReconfigureEvent	(when	PlayerGameConnection#reenterConfiguration	is	called	on	an	already	joined	player)	Dialog	API	will	be	merged	into	1.21.7	soon,	we'll	post	a	dev	announcement	once	it's	in!	You	can	see	its	current	status	here:	/	You	will	also	be	able	open	dialogs	via	a	new	click	event	type
directly	using	ClickEvent.openDialog.	For	custom	clicks	actions,	you	may	use	the	PlayerCustomClickEvent,	but	the	better	and	preferred	option	is	to	directly	pass	a	consumer-like	callback	in	DialogAction.customClick,	which	will	be	run	when	the	player	clicks	the	specified	element.	ItemStacks	now	use	the	SNBT	format	when	writing	to	configuration
files.	This	allows	us	to	run	ItemStack	upgrades	through	Minecraft's	data	fixers,	going	through	much	more	reliable	upgrades	of	existing	stacks.	Direct	serialization	of	ItemMeta	(as	in,	storing	ItemMeta	in	a	config)	is	now	considered	unsupported	and	will	likely	be	removed	in	the	future.	If	you	want	to	serialize	items	to	other	formats,	such	as	JSON	or	as
before	raw	bytes,	the	(de)serializeStack	methods	on	UnsafeValues	might	be	of	interest	to	you.	Cow	inheritance	has	been	adjusted	to	fit	Vanilla:	MushoomCow	no	longer	extends	Cow,	but	the	new	AbstractCow	Cow	now	extends	AbstractCow	On	top	of	that,	the	potion	entity	type	has	now	been	split	up	into	splash	and	lingering	potions,	meaning	you	will
now	have	to	use	those	new	entity	types	instead	and	will	no	longer	be	able	to	swap	out	an	lingering	for	a	splash	potion	and	vice	versa	without	creating	a	new	entity.	Here	is	a	small	selection	of	recent	API	additions	that	might	be	interesting	to	you:	Registry	events	for	modifying/adding	custom	cat,	chicken,	cow,	frog,	pig,	and	wolf	variants,	as	well	as
damage	types	and	paintings	Player#openVirtualSign	to	open	unplaced	signs.	Changes	can	be	checked	via	UncheckedSignChangeEvent	Entity#getPickItemStack	to	get	the	spawn	egg/item	for	an	entity	when	using	the	pick	action	on	it	HumanEntity#setCooldown(Key,	int	ticks)	and	its	getter	for	grouped	cooldowns	rather	than	single-item	specific	ones
Server#sendRichMessage(String)	and	sendPlainMessage	for	broadcasting	and	logging	plain/minimessage	text	Other	new	events,	including	PlayerMapFilledEvent,	PlayerPickBlockEvent,	PlayerPickEntityEvent,	VaultChangeStateEvent,	ClientTickEndEvent,	EntityEquipmentChangedEvent,	EntityAttemptSmashAttackEvent,
PlayerClientLoadedWorldEvent,	EntityEffectTickEvent	After	the	release	of	the	first	builds	for	Minecraft	1.21.4,	we	are	happy	to	share	some	even	more	exciting	news	with	everyone.	Following	the	successful	rollout	of	our	Mojang-mapped	server	in	1.20.5,	we	are	taking	a	big	next	step	for	the	project:	Since	the	project's	inception,	Paper	has	been	built	on
top	of	Spigot,	consistently	staying	up-to-date	with	features	introduced	to	it.	Today,	Paper	applies	nearly	1600	additional	patches	with	more	than	130,000	lines	of	code	over	Spigot.	As	a	result	of	such	divergence,	our	strict	policy	to	stay	up-to-date	with	Spigot	has	been	limiting	the	project,	most	noticeably	with	slower	version	updates	since	its	updates	to
snapshots,	pre-releases	and	release	candidates	are	worked	on	behind	closed	doors.	Hardforking	removes	this	unnecessary	delay	and	sees	Paper	become	its	own	independent	project,	streamlining	development	of	the	server	and	major	missing	API,	such	as	our	recent	registry	and	item	data	component	API.	This	does	not	mean	that	existing
configs/API/behavior/etc.	will	be	removed.	Starting	with	1.21.4,	Paper	will	simply	no	longer	be	bound	to	Spigot's	future	changes,	enabling	us	and	the	community	to	move	forwards	on	our	own	terms.	While	this	may	sound	scary,	we	have	bundled	up	some	helpful	disclaimers	for	each	relevant	user	group	down	below.	We	are	committed	to	making	this
process	as	smooth	as	possible	for	everyone.	If	any	more	questions	arise,	feel	free	to	ask	us	on	our	Discord!	As	a	server	owner/administrator,	there	will	be	no	change	initially.	For	now,	both	bukkit.yml	and	spigot.yml	will	continue	to	work	how	they	always	have.	Plugins	already	running	on	the	stable	1.21.4	builds	as	well	as	plugins	compiling	to	older
versions	of	Spigot	will	also	continue	to	run.	As	the	plugin	API	of	Paper	and	Spigot	slowly	diverge,	the	only	potential	worry	may	be	plugins	trying	to	use	Spigot	features	introduced	after	the	hardfork.	We	presume	a	large	number	of	plugins	to	prefer	Paper	compatibility	over	Spigot	already,	given	the	current	market	share	of	the	two	projects.	A	huge
upside	for	you	is	the	considerably	faster	release	speed	of	Paper	during	Minecraft	releases,	as	mentioned	prior.	Post	hardfork,	we	are	able	to	update	Paper	to	release-candidates,	pre-releases	and	maybe	even	snapshots	to	get	experimental	builds	out	to	everyone	as	early	as	possible.	Just	like	for	server	owners,	there	will	be	no	initial	change	in	the	plugin
API.	Existing	methods	inherited	from	Spigot	are	maintained	and	will	continue	to	work.	This	includes	methods	deprecated	by	us,	like	legacy	text/chat	color.	However,	we	will	no	longer	pull	all	new	API	added	to	Spigot	after	hardfork.	To	avoid	accidentally	calling	such	methods,	we	strongly	suggest	building	your	plugin	against	the	Paper-API	dependency.
We	are	still	open	to	manually	pulling	some	new	upstream	API	into	Paper	to	ensure	plugin	developers	do	not	lose	out	on	functionality,	but	you	should	not	rely	on	it.	Usage	of	server	internals	via	paperweight-userdev	will	also	continue	to	work	as	it	has	before,	however,	we	recommend	slowly	preparing	your	plugin	to	run	on	a	Mojang-mapped	server	with
jar	and	reflection	remapping	disabled.	This	can	be	achieved	with	the	-Dpaper.disablePluginRemapping=true	startup	flag.	If	you	aren't	already	using	paperweight-userdev	despite	using	internal	Vanilla	classes	directly,	you	should	move	towards	it.	If	you	are,	you	don't	need	to	do	anything	else,	as	you	can	simply	later	remove	the	obfuscation	step	and	will
be	compatible	with	the	future	change	-	only	reflective	calls	need	to	be	addressed.	However,	we	will	give	you	ample	time	to	prepare	for	this	and	will	continue	to	automatically	remap	plugins	for	a	while.	Once	that	happens,	it	will	become	much	easier	to	support	multiple	versions	with	little	internal	changes,	which	the	obfuscated	mappings	and	arbitrary
CraftBukkit	package	relocation	currently	prevent.	The	single	set	of	standard	mappings	will	also	make	debugging	and	code-sharing	easier.	With	the	switch	to	Paper-API	and	later	a	Mojang-mapped	server,	your	plugins	may	no	longer	run	on	Spigot.	Paper's	market	share	of	85-90%	on	recent	versions	(according	to	some	of	the	largest	plugins	on	bStats,
including	forks	of	Paper)	should	make	it	easy	for	you	to	support	almost	all	of	your	users	in	the	post-hardfork	versions,	even	without	being	compatible	with	Spigot.	Publishing	plugins	that	require	Paper	can	be	done	on	numerous	platforms,	most	notably	Hangar	and	modrinth.	Because	we	are	merging	in	API/API-implementation	source	file	history	and	the
new	branch	will	have	an	entirely	unrelated	git	commit	history	to	the	previous	branches,	we	will	eventually	delete	all	older	version	branches,	everything	from	ver/1.8.8	up	to	ver/1.21.3.	If	you	are	in	any	way	referencing	them	on	our	current	repository,	make	sure	to	update	their	URL	to:	Our	current	compressed	repo	size	is	over	90MB	-	the	new	branch,
despite	having	many	many	more	commits,	will	be	less	than	35MB	in	packed	size,	meaning	cloning	the	repository	will	become	much	faster	once	the	old	branches	have	been	removed.	On	top	of	that,	looking	at	the	previous	patch-file	history	will	also	be	a	lot	easier	thanks	to	cleaning	up	index	and	line	changes	from	the	history.	Hardfork	affects
contributions	to	Paper	dramatically,	most	of	it	for	the	better.	With	hardfork,	the	Paper	repository	will	receive	a	full	restructure,	moving	the	entire	API	and	API-implementation	straight	as	source	into	the	repository.	Contributions	to	these	can	now	directly	be	made	on	the	.java	files,	without	the	need	to	edit/rebuild	patches.	Changes	to	Mojang-owned
sources	will	still	be	based	on	patches,	but	each	Vanilla	source	file	will	be	represented	by	a	single,	per-file	patch.	For	large	changes,	like	anti-xray	and	moonrise,	Paper	will	also	offer	the	old	feature-based	patch	approach	on	top	of	the	previously	described	layout,	combining	the	best	of	both	techniques,	next	to	an	updated	decompiler	(Vineflower)	and
mappings	set	(Parchment).	In	order	to	preserve	history,	we	have	merged	multiple	git	trees,	including	our	full	patch-file	history,	and	those	patches	applied	into	real	commits	over	the	existing	Spigot	history.	Older	states	containing	decompiled	Vanilla	source	files	have	been	filtered.	The	history	change	unfortunately	means	that	all	open	PRs	will	have	to
be	closed	later,	and	they	cannot	be	force-pushed	to	target	the	new	branch	either.	Please	do	not	reopen	PRs	until	we	provide	more	detailed	information	on	how	to	semi-automatically	update	old	pull	requests	and	have	given	the	go-ahead	for	new	ones.	The	main	change	you	will	have	to	deal	with	is	the	updated	decompiler	and	mappings.	We	will	provide
you	with	more	information	once	our	initial	update	process	is	finished.	New	versions	of	Paperweight	patcher	will	be	published	to	be	compatible	with	our	new	repository	structure.	For	now,	make	sure	you	change	upstream	targets	of	1.21.3	and	older	to	the	new	archive	repository.	It's	hard	to	give	an	exact	timeline,	but	you	will	be	able	to	follow	the	rough
progress	of	our	hard	fork	process	in	the	following	GitHub	issue:	We	will	spend	the	following	weeks	updating	the	repository	by	changing	the	patch	structure	and	fixing	endless	patch	conflicts	from	the	updated	decompiler	and	new	set	of	local/parameter	mappings.	Once	that	is	done,	we	will	push	these	builds	as	experimental	builds	to	ensure	we	didn't
break	any	backwards	compatibility	or	introduced	any	new	issues.	Once	we	have	finished	our	tooling	around	forks	and	userdev,	we	will	post	an	announcement	on	how	to	update	forks	and	notify	Paper	contributors	on	how	to	properly	update	their	pull	requests	to	the	new	main	branch.	At	some	point	down	the	line	on	new	Minecraft	releases,	you	can
expect	API	and	preliminary	builds	to	be	published	even	before	the	full	Minecraft	release	day.	Eventually,	we	will	start	cleaning	up	and	automatically	migrating	the	different	configs,	and	slowly	remove	long-disfunctional	deprecated	API,	but	our	focus	remains	to	make	these	transitions	as	smooth	and	graceful	as	possible.	This	change	allows	us	to	work
on	snapshots,	and	to	more	freely	work	on	major	missing	API.	Contributions	to	Paper	become	a	lot	easier,	and	plugin	development	will	become	easier	as	well,	both	regarding	API	and	server	internals!	Server	admins:	No	action	needed,	but	you	might	no	longer	be	able	to	go	back	to	Spigot	starting	with	1.21.4.	Plugin	developers:	No	immediate	action
needed,	but	you	should	compile	against	Paper-API	starting	with	1.21.4.	Paper	contributors:	You	will	have	to	redo	your	PRs,	but	we	will	tell	you	more	about	that	later	and	provide	you	with	useful	scripts	and	tools.	Forks/server	hosts:	Migrate	any	use	of	the	old	version	branches	(e.g.	ver/1.8.8,	ver/1.21.1;	everything	below	1.21.4)	to	the	new	archive
repository.	Thank	you	for	making	the	Paper	organization	into	what	it	has	become	today,	we're	grateful	that	so	many	people	choose	to	use	our	software!	Focusing	on	preparations	for	this	process	took	a	toll	on	Paper	pull	requests	and	Hangar	activity,	but	we'll	be	able	to	churn	through	these	much	faster	afterwards!	Paper	and	Velocity	1.21.3	builds	are
out	of	the	experimental	phase!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.21.3,	you	cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update:If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	After	having	added	spark	as	our	main	profiler
for	diagnosing	causes	of	lag	in	1.21,	Timings	has	been	set	to	no-op	mode.	This	means	that	it	can	no	longer	be	enabled	or	used,	though	its	API	classes	will	remain	until	a	later	update.	As	a	developer,	please	make	sure	you	remove	any	custom	Timing	uses	by	then.	You	can	see	our	docs	page	as	well	as	the	GitHub	Discussions	page	for	more	details	and
also	provide	feedback	there.	Vanilla	added	a	server.properties	option	to	pause	world	and	entity	ticking	when	no	players	are	online	after	a	while.	This	behavior	is	disabled	by	default	on	Paper	because	it	is	incompatible	with	what	plugins	expect	and	might	do	with	no	players	online.	You	can	enable	it	again	by	changing	the	value	in	the	server.properties
file,	but	we	generally	recommend	against	doing	that	unless	you	are	100%	certain	your	plugins	are	compatible	with	server	pausing	or	you	may	run	into	crashes	or	save	data	issues	(they	won't	be	able	to	properly	work	with	entities	and	the	world,	or	do	other	actions	that	would	require	"active"	world	ticking).	Unlike	the	Bukkit	schedulers,	Folia's
GlobalRegionScheduler	will	not	be	ticked	while	the	server	is	paused.	If	you	ran	a	Spigot	1.21.3	server	before	switching	back	to	Paper,	we	recommend	manually	setting	pause-when-empty-seconds	to	-1	to	disable	it.	Under	entities.spawning.despawn-time,	you	can	now	configure	hard	despawn	times	in	ticks	for	when	an	entity	should	be	forcefully
despawned.	An	example	usecase	of	this	is	preventing	certain	projectiles	from	being	kept	alive	permanently.	This	patch	was	ported	from	Pufferfish	with	Kevin's	go-ahead.	We	have	added	the	legacy-ender-pearl-behavior	config	option	to	prevent	ender	pearls	from	being	saved	to	the	player	and	loading	chunks,	meaning	they	will	behave	like	they	did	in
1.21.1	and	before.	Paper	will	default	to	the	new	vanilla	behavior.	We	have	fixed	incorrect	handling	of	damage	reduction	during	invulnerable	ticks	after	being	hit	to	work	like	it	does	in	Vanilla	again.	Mojang	fixed	string	disarming	behavior	and	its	dupe,	so	we	have	dropped	our	patch	and	configuration	option.	For	developers	In	case	you	skipped	the
1.20.5/6	update,	make	sure	to	read	its	announcement	on	Mojang	mappings	use	at	runtime	and	our	new	Brigadier	command	API.	As	mentioned	in	the	above	section,	server	pausing	may	have	significant	implications	on	your	plugin's	functionality.	Please	make	sure	to	test	your	plugins	on	a	paused	server	or	to	otherwise	warn	users	against	enabling	the
feature.	If	you	are	sure	your	plugin	does	not	and	cannot	support	server	pausing,	please	use	Server#allowPausing(Plugin,	Boolean)	to	prevent	accidental	use	of	the	feature	by	users.	Similarly	you	can	also	check	whether	it	is	currently	enabled	by	calling	Server#isPaused.	We	have	finally	merged	API	to	add	or	edit	(almost)	all	data	components	on	items.
Since	1.20.5,	item	data	is	no	longer	held	in	mostly	arbitrary	NBT,	but	in	properly	defined	data	structures,	which	have	also	seen	a	massive	amount	of	new	features	that	the	current	ItemMeta	API	is	either	missing	or	poorly	representing.	You	can	see	the	various	data	types	under	DataComponentTypes,	although	we	will	keep	adding	getter/setter	helper
methods	to	ItemStack	or	ItemMeta	where	appropriate.	Here	is	an	example:	Java:	ItemStack	itemStack	=	new	ItemStack(Material.DIAMOND_HELMET);	//	Update	parts	of	the	already	existing	equippable	data:	//	Use	the	netherrite	helmet	model	when	worn	and	change	the	equip	sound	Equippable.Builder	equippable	=
itemStack.getData(DataComponentTypes.EQUIPPABLE).toBuilder()	.model(Material.NETHERITE_HELMET.getDefaultData(DataComponentTypes.EQUIPPABLE).model())	.equipSound(SoundEventKeys.ENTITY_GHAST_HURT);	itemStack.setData(DataComponentTypes.EQUIPPABLE,	equippable);	//	Create	new	food	data	FoodProperties.Builder	food	=
FoodProperties.food()	.canAlwaysEat(true)	.nutrition(2)	.saturation(3.5f);	itemStack.setData(DataComponentTypes.FOOD,	food);	NOTE:	This	api	is	marked	as	@Experimental	and	follows	similar	API	safety	as	the	registry	API.	It	may	change	dramatically	between	Minecraft	versions	without	backwards	compatiblity	attempts.	Added
PlayerItemGroupCooldownEvent	to	listen	to	cooldowns	that	may	not	be	directly	associated	with	using	an	item,	since	cooldowns	are	now	added	via	cooldown	groups	rather	than	item	types.	The	already	existing	PlayerItemCooldownEvent	extends	the	new	event.	Due	to	Vanilla	changes	to	relative	teleportation,	TeleportFlag.Relative	enum	members	have
been	deprecated.	The	new	members	with	more	appropriate	names	are:	VELOCITY_X,	VELOCITY_Y,	VELOCITY_Z,	and	VELOCITY_ROTATION	EntityDamageEvent	now	has	the	INVULNERABILITY_REDUCTION	cause	Our	auto-generated	Vanilla	key	classes	(e.g.	SoundEventKeys)	now	implement	Key,	so	they	can	be	used	in	API	like	the	data
componenents	API	directly	You	can	now	create	custom	painting	art	via	API	and	the	new	RegistryEvents.PAINTING_VARIANT.	More	are	coming	over	time	as	well	-	see	for	more	info	on	how	to	use	them	Stable	Paper	and	Velocity	1.21	builds	have	been	released!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.21,	you
cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update:If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	Thanks	to	riley	and	Luck,	Paper	now	bundles	spark	as	its	main	profiler	for	diagnosing	causes	of	lag.	Timings	is	now	disabled	by	default	and	will	be	entirely	removed	at
a	later	date,	possibly	with	1.22.	As	a	developer,	please	make	sure	you	remove	any	custom	Timing	uses	by	then.	You	can	see	our	docs	page	as	well	as	the	GitHub	Discussions	page	for	more	details	and	also	provide	feedback	there.	The	disable-teleportation-suffocation-check	config	option	is	now	gone,	as	this	check	no	longer	exists	in	vanilla.	We	have	also
changed	a	number	of	default	configuration	values	to	improve	the	gameplay	experience:	merge-radius.exp:	3->-1(disabled).	vanilla	has	its	own	less	aggressive	merging	logic,	but	generally	xp	orbs	were	not	a	large	performance	concern;	otherwise	we	might	instead	offer	new	options	to	change	vanilla’s	merge	logic	merge-radius.item:	2.5->0.5,	reflecting
the	vanilla	default,	since	the	increased	value	was	often	seen	as	disruptive.	If	you	expect	large	number	of	the	same	item	types	to	be	lying	around	close	to	one	another,	you	can	increase	this	again	entity-activation-range.raider:	48->64	Various	values	under	entity-tracking-range	have	been	increased	to	make	sure	you	can	actually	see	monsters	and
players	attacking	you	from	farther	away	(e.g.	no	longer	running	into	invisible	ghasts	shooting	at	you	in	the	nether.	Note	that	this	does	not	affect	ticking,	only	whether	they	are	sent	to	a	player)	players:	48->128	animals:	48->96	monsters:	48->96	misc:	32->96	In	1.20.5/6,	Spigot	has	made	additions	to	their	plugin	rewriting	that	resulted	in	poor	startup
performance,	adding	multiple	seconds	to	each	individual	larger	plugin.	This	has	unfortunately	been	made	slightly	worse	again	in	1.21.¹	We	have	already	mildly	improved	on	it	and	are	working	on	reducing	it	by	as	much	as	possible,	but	in	the	meantime	you	can	work	around	it	by	disabling	the	cross-version	compatibility	measures	by	either	optionally
using	Paper's	plugin	loader	as	a	developer,	or	by	using	the	paper.disableOldApiSupport	startup	flag.	However,	the	flag	will	only	work	if	all	of	your	plugins	are	built	against	the	latest	API	version.	The	final	Done	(7.392s)!	For	help,	type	"help"	message	now	shows	the	time	from	when	the	Minecraft	server	initially	bootstrapped.	Previously,	it	was	in	a	kind
of	weird	spot	where	it	only	tracked	world	loading,	plugins,	and	a	few	other	parts	of	server	startup.	We	have	also	reinstated	vanilla's	original	Done	preparing	level	message	next	to	the	total	startup	time.	As	per	the	last	announcement,	we	now	use	Mojang	mappings	at	runtime	and	thus	have	to	remap	plugins	that	might	still	be	using	Spigot's	mess	of

mappings.	The	.paper-remapped	folder	in	the	plugin	directory	caused	a	bit	of	confusion,	so	here's	what	it	does:	It	stores	the	remapped	plugin	jars	as	well	as	a	cached	server	jar,	so	that	all	of	these	don't	have	to	be	processed	during	every	single	server	startup.	The	folder	is	automatically	cleaned	up,	so	you	don't	need	to	(and	generally	shouldn't)	touch	it.
For	developers	In	case	you	skipped	the	1.20.5/6	update,	make	sure	to	read	its	announcement	on	Mojang	mappings	use	at	runtime	and	our	new	Brigadier	command	API.	Attribute	modifiers	no	longer	have	a	name	and	uuid	and	instead	make	use	of	a	single	string	key	as	its	identifier.	The	old	constructors	and	methods	are	unusable	as	of	now,	only	the
Paper-added	get/removeModifier	via	uuids	have	had	a	temporary	compatibility	measure	put	in.	If	you	are	using	this	API,	make	sure	to	move	to	their	replacements	as	soon	as	possible.	Our	vanilla	chunk	gen	delegation	API	already	broke	with	almost	every	major	update	and	this	one	is	no	exceptions.	Together	with	the	regenerateChunk	method,	their
implementation	is	no	longer	feasible	due	to	how	hard-coupled	and	stateful	a	lot	of	the	handling	has	become.	The	only	way	to	properly	regenerate	chunks	with	structures	and	everything	else	attached	is	to	generate	a	world	with	the	same	seeds	and	to	copy	over	those	chunks.	The	ItemStack	class	within	the	API	module	no	longer	holds	its	method
implementations	directly,	but	instead	always	redirects	to	a	held	internal	(Craft)ItemStack	instance.	This	won't	matter	to	most	people,	but	it	means	that	you	can	no	longer	run	unit	tests	using	the	API-only	ItemStack.	If	this	affects	you	and	you	aren't	already	using	a	Minecraft	testing	framework,	we	recommend	using	something	like	Mockbukkit	to	mock
a	running	server	instance.	We	have	added	ItemMeta#hasDamageValue	to	check	whether	the	damage	item	data	component	has	been	added	to	an	item.	hasDamage	will	still	return	whether	there	is	a	non-0	amount	of	damage.	For	resetting	damage,	we	recommend	using	resetDamage	instead	of	setting	it	to	0	to	improve	item	comparison.	There's	still
other	issues	thanks	to	ItemMeta	clashing	hard	with	Minecraft's	new	item	data	storage,	including	unfortunate	but	not	really	solvable	behavioral	breaks	to	item	flags.	Right	now,	we're	still	working	on	our	improved	item	data	component	API	in	the	background	and	will	let	you	know	more	once	it	has	been	merged.	End	gateway	teleportation	cancellation
doesn't	reset	the	portal	cooldown,	so	you	should	use	EntityPortalEnterEvent	with	PortalType.END_GATEWAY	to	check	for	initial	entries	Projectile#getWeapon	is	now	nullable	If	you	have	previously	contributed	to	our	main	Paper	repository	on	GitHub	and	want	the	email	or	name	that	was	used	on	that	commit	to	be	changed,	you	may	use	the	modmail
command	on	our	Discord	to	tell	us	the	new	details.	As	per	our	planned	repository	restructure	in	the	future,	the	current	git	history	will	be	overridden,	so	we	thought	we	might	as	well	fix	the	details	for	anyone	that	needs	it.	¹	Here	are	a	few	examples	(results	will	vary	depending	on	hardware	and	OS),	which	will	quickly	add	up	the	more	plugins	you	have:
ViaVersion	takes	over	two	seconds	longer	to	load	(from	a	few	hundred	ms	to	2.5	seconds)	WorldEdit	takes	two	and	a	half	seconds	longer	(from	about	1.5	to	4	seconds)	CoreProtect	takes	a	second	and	a	half	longer	(on	a	clean	setup	with	otherwise	no	measurable	load	time	at	all	if	rewriting	is	disabled)	Stable	Paper	and	Velocity	1.20.6	builds	have	been
released!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.20.6,	you	cannot	downgrade	back	to	a	lower	version!	The	reason	for	the	stable	announcement	arriving	so	late	is	that	upstream's	item	handling	has	shown	to	be	incredibly	broken	after	the	1.20.5	changes	to	items.	Unfortunately,	there	still	remain	a	good	number	of
smaller	issues	with	ItemMeta	APIvanilla	conversion,	but	at	this	point	we	should	have	gotten	rid	of	the	nastier	ones.	In	any	case,	please	make	sure	to	report	any	such	issues	or	missing	functionality	on	our	issue	tracker.	We	would	like	to	thank	everyone	that	worked	on	this	update	(a	lot	of	people	and	work	were	needed	for	a	minor	update,	once	again):	If
you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	Minecraft	1.20.6	requires	you	to	run	Java	21.	See	here	on	how	to	update	your	installed	Java	version.	Mojang	has	drastically	revamped	the	way	itemstacks	store	their	data.	While	they	are	still	serialized	to	raw	NBT	in	chunk	and	entity	files,	this	is	no	longer	true	for	commands
and	storage	at	runtime.	We	have	created	an	item	command	converter	page	(where	you	can	update	your	commands	etc.	If	you	are	a	developer,	see	the	below	section	on	how	this	might	affect	you.	Unlike	vanilla/Spigot,	Paper	will	also	automatically	upgrade	commands	in	command	blocks	as	well	as	text	components	in	signs	when	upgrading	from	an
older	server	version.	If	you	for	whatever	reason	do	not	wish	to	have	these	upgraded,	you	can	use	the	Paper.DisableCommandConverter	system	property/startup	flag.	For	this	reason,	we	also	highly	discourage	upgrading	your	old	world	with	non-Paper	servers.	Note	that	the	hide-item-meta	config	option	has	not	yet	been	updated,	but	everything	else
should	work	as	expected.	Our	keep-spawn-loaded	and	keep-spawn-loaded-range	config	options	have	been	removed,	as	Mojang	has	added	the	spawnChunkRadius	gamerule,	serving	the	same	function.	As	announced	previously,	we	have	dropped	Spigot's	mix	of	partially	obfuscated,	partially	Mojang	mapped,	and	partially	Spigot	mapped	runtime	names
of	classes,	methods,	and	fields.	On	top	of	that,	we	have	dropped	the	arbitrary	CraftBukkit	package	relocation	version.	Plugins	compiled	against	the	reobfuscated	server	will	still	work	via	magical	plugin	remapping	that	is	applied	once	on	startup,	as	well	as	reflection	rewriting.	However,	we	highly	recommend	using	paperweight-userdev	to	offer	plugin
jars	targeting	the	mapped	server,	even	if	just	as	a	secondary	jar,	as	it	would	greatly	benefit	the	vast	majority	of	your	users	(well	over	80-90%).	If	you	are	not	using	internals	and	thus	run	on	a	Mojang	mapped	server	fine,	you	should	exclude	your	plugin	from	being	remapped	by	adding	the	Mojang-mapped	marker	to	the	jar	manifest	(setting
paperweight-mappings-namespace	to	mojang).	Alternatively,	you	can	add	the	entry	manually	in	your	gradle	or	maven	build	scripts.	We	have	finally	added	more	powerful	API	to	interact	with	Brigadier	commands	directly.	Brigadier	is	the	command	library	vanilla	uses	for	creating	and	parsing	commands,	meaning	you	can	add	much	nicer	auto-
completions	and	argument	handling	for	your	commands,	although	this	will	be	most	interesting	for	command	libraries	wrapping	around	Brigadier.	Basic	usage	is	explained	on	our	docs	page.	If	you	were	using	API	to	modify	item	data,	then	you	are	largely	fine.	Since	we	have	long	deemed	moving	away	from	raw	NBT	data	storage	inevitable,	we	have
never	added	API	for	interacting	with	the	underlying	NBT	data	directly.	As	such,	only	plugins	unnecessarily	mutating	items	through	internals	should	break.	The	persistent	data	container	API	is	also	not	affected.	For	item	serialization,	we	highly	recommend	using	our	ItemStack#serializeAsBytes	method	over	Spigot's	config	serialization,	so	that	you	can
guarantee	proper	upgrade	paths,	compatibility	for	stored	items,	and	better	performance.	ItemMeta	is	very	much	not	compatible	with	the	idea	of	storing	any	data	on	any	item,	e.g.	adding	durability	to	a	book,	or	making	stone	eatable.	While	we	have	tried	our	best	at	making	sure	that	such	custom	data	is	not	lost,	the	API	has	no	proper	way	of	applying
these	at	the	moment.	On	top	of	that,	a	lot	of	Spigot	API	that	previously	assumed	a	specific	set	of	hardcoded	enums,	such	as	banner	patterns,	break	when	trying	to	add	custom	ones.	We	currently	have	a	better	system	for	this	in	the	works,	but	it	will	take	some	more	time	before	it	is	fully	ready.	Finally,	a	lot	of	item	data	now	has	hard	limits	for	size	and
length,	such	as	lore	being	limited	to	256	entries	-	most	of	these	you	shouldn't	really	run	into.	The	most	notable	example	is	player	profiles	(including	player	head	profiles),	where	player	names	can	no	longer	exceed	16	characters	and	are	limited	to	printable	ascii	characters.	We	strictly	enforce	these	everywhere,	as	otherwise	it	could	lead	to	chunks	and
player	data	unable	to	be	saved,	as	well	as	inventory	or	player	info	updates	erroring	on	the	client.	Another	piece	of	broken	API	is	our	canPlaceOn	and	canBreak	methods,	as	these	have	had	major	changes	that	can	now	longer	accurately	be	represented	by	just	a	list	of	materials.	New	API	for	this	will	also	be	added	soon.	Unlike	before,	you	can	no	longer
set	most	of	the	hide	item	flags	without	the	data	in	question,	e.g.	you	need	to	set	can_place_on	data	in	order	to	hide	it.	Finally,	here	is	a	closing	note	from	our	master	of	words,	electroniccat:	as	always,	BACKUP	YO	SHIT,	so	long,	and	thanks	for	the	fish	As	many	of	you	might	have	noticed,	Waterfall	hasn't	received	much	love	from	our	team	and	the	great
contributor	community	in	the	past	years.	We	have	also	seen	less	and	less	traffic	in	the	support	channels	on	Discord.	Additionally,	Mojang	is	making	huge	investments	into	the	core	engine	of	the	game	which	results	in	big	and	complicated	changes	to	the	inner	workings	of	the	game.	While	these	changes	are	very	welcome	and	we	have	been	pushing	for
some	of	them	for	years,	they	also	mean	that	there	is	a	bunch	of	work	ahead	of	us	for	adapting	our	projects	to	these	changes.	We	don't	think	we	can	find	enough	people	from	our	team	and	contributors	to	put	that	work	into	Waterfall	anymore,	we	want	to	focus	our	efforts	on	our	flagship	projects	Paper	and	Velocity.	We	also	don't	feel	comfortable	putting
out	something	that	doesn't	live	up	to	our	standards	in	terms	of	the	testing	that	went	into	it.	That's	why	we	decided	that	we	want	to	officially	announce	the	end	of	life	of	Waterfall.	Starting	today,	big	red	angry	banners	will	appear	on	the	Waterfall	sub-pages	of	our	documentation	site	and	our	website.	These	are	pointing	here	and	act	as	a	way	to	inform
everybody	of	what	is	going	on.	Other	than	that,	there	will	be	no	direct	change.	All	documentation	will	still	be	accessible,	you	will	still	be	able	to	download	all	versions	of	Waterfall	as	usual.	What	will	change	is	that	you	will	see	even	more	sporadic	updates.	You	also	shouldn't	count	on	updates	to	new	Minecraft	versions,	although	we	aren't	ruling	that	out
at	this	time.	Migrate	to	Velocity!	All	the	knowledge	the	people	who	originally	worked	on	Waterfall	gained	has	been	put	into	Velocity,	a	proxy	solution	that	was	built	from	the	ground	up	with	performance,	stability	and	security	in	mind.	You	can	learn	how	to	get	started	with	Velocity	on	our	documentation	site.	You	can	find	plugins	compatible	with
Velocity	on	Hangar,	our	new	plugin	repository.	If	you	encounter	any	issues	while	migrating	to	Velocity,	feel	free	to	post	on	the	forums	or	our	Discord,	we	are	happy	to	help!	Please	join	our	discord	community	if	you	have	any	concerns	about	this	announcement.	If	you	are	not	a	developer	but	a	server	owner,	this	might	still	be	important	for	you.	Check
the	bottom	section	on	what	action	you	might	have	to	take.	Update:	This	change	has	been	put	into	effect	in	1.20.5,	make	sure	you	test	with	the	latest	Paper	1.20.5	builds.	As	already	announced	before,	at	some	point	in	the	foreseeable	future,	we	will	remove	the	CraftBukkit	package	relocation	(e.g.	v1_20_R3).	This	may	be	as	soon	as	1.20.5,	as	we	expect
almost	every	plugin	using	internals	to	break	due	to	major	changes	in	vanilla	anyways.	Note:	This	also	includes	testing	of	automated	remapping	of	plugins	to	make	them	run	on	Mojang	mapped	servers,	even	if	a	plugin	is	compiled	against	the	obfuscated	class	and	method	names	(if	you	don't	use	any	vanilla	internals,	this	doesn't	affect	you).	So	even	if
you	have	already	fixed	CB	package	parsing,	please	check	whether	your	plugins	are	able	to	run	on	this	jar	if	they	are	using	internals	(or	"nms").	Once	these	changes	are	present	in	stable	Paper	builds,	you	can	expect	a	much	better	experience	when	using	the	often	dreaded	internals	by	using	our	userdev	Gradle	plugin.	Most	notably,	small	Minecraft
updates	will	no	longer	unconditionally	break	your	plugins.	If	you	reflect	on	CB	classes	Easy,	just	don't	try	to	parse	the	package	version.	The	following	will	work	on	servers	with	and	without	CB	relocation:	Java:	private	static	final	String	CRAFTBUKKIT_PACKAGE	=	Bukkit.getServer().getClass().getPackage().getName();	public	static	String
cbClass(String	className)	{	return	CRAFTBUKKIT_PACKAGE	+	"."	+	className);	}	Class.forName(cbClass("entity.CraftBee"))	If	you	try	to	parse	the	server	version	Do	NOT	do	this:	Java:	String	craftBukkitPackage	=	Bukkit.getServer().getClass().getPackage().getName();	//	This	is	the	*bad*	part,	including	any	other	parsing	of	the	version	String
version	=	craftBukkitPackage.substring(craftBukkitPackage.lastIndexOf('.')	+	1);	if	(version.equals("v1_20_R3"))	{	//	...	}	else	{	//	Unsupported	}	Instead,	use	long-standing	API:	Java:	//	Paper	method	that	was	added	in	2020	//	Example	value:	1.20.4	String	minecraftVersion	=	Bukkit.getServer().getMinecraftVersion();	//	Bukkit	method	that	was	added	in
2011	//	Example	value:	1.20.4-R0.1-SNAPSHOT	String	bukkitVersion	=	Bukkit.getServer().getBukkitVersion();	if	(minecraftVersion.equals("1.20.4"))	{	//	...	}	else	{	//	Assume	latest	still	works,	or	error	as	unsupported	//	Alternatively	for	extra	compatibility,	check	if	//	the	latest	package	version	is	valid	by	catching	//	ClassNotFoundException	with:
Class.forName("org.bukkit.craftbukkit.v1_20_R3.CraftServer")	}	The	Minecraft	version	strings	you	can	parse	and	evaluate	to	your	heart's	content.	Another	(less	recommended)	alternative	is	getting	the	server	protocol	version	from	Bukkit.getUnsafe.	If	you	are	running	a	somewhat	recent	server	version	with	up-to-date	plugins	(!),	you	should	also	test
whether	your	plugins	are	able	to	run	on	the	test	server	jar	also	linked	above.	Please	make	sure	not	to	use	the	server	jar	on	your	main	servers,	but	to	copy	your	plugin	setup	to	a	separate	test	server.	The	error	that	plugin	developers	need	to	fix	will	look	something	like	this:	[11:46:19]	[Server	thread/ERROR]:	Error	occurred	while	enabling
PLUGINNAME	v1	(Is	it	up	to	date?)	java.lang.ArrayIndexOutOfBoundsException:	Index	3	out	of	bounds	for	length	3	at	...	Alternatively,	they	might	log	an	error	saying	you	are	using	an	unknown	or	unsupported	server	version.	If	any	of	your	plugins	start	printing	new	errors	like	these	and	you	have	made	sure	that	they	are	already	up-to-date,	please
report	the	error	with	a	link	to	this	announcement	to	the	relevant	plugin	authors.	Wishing	you	all	a	super	happy	New	Year!	It's	been	a	big	year	at	Paper!	We've	grown	a	lot	and	have	some	big	changes	on	the	horizon.	Our	team	has	yet	again	increased	in	size	and	become	even	more	motivated	to	work	towards	our	goal	of	hard	forking.	PaperMC	is
powered	by	the	contributions	from	everyone,	and	we	have	made	it	our	priority	that	new	contributions	are	getting	out	there	as	soon	as	possible.	And	through	that,	we	have	seen	some	new	faces	pop	up	and	contribute	more	often.	This	year,	we	merged	over	475	Pull	Requests	from	over	120	unique	contributors!	Going	through	each	one	of	these	PRs
wouldn't	be	possible	without	you,	so	we	are	so	grateful	for	all	the	bugs	reported,	testing	done,	and	all	the	new	contributors	who	decided	to	give	it	a	shot.	This	year	was	a	big	team	effort,	and	we	want	to	thank	each	and	every	person	who's	been	a	part	of	it.	Your	ideas	and	hard	work	made	PaperMC	even	better,	and	we're	so	excited	to	keep	growing	and
improving	together.	The	future	is	bright,	we	have	a	lot	of	work	being	done	behind	the	scenes	that	we	hope	to	be	able	to	get	out	into	your	hands	in	2024.	With	our	new	Paper	Plugins	introduced	this	year,	we	introduced	ways	of	running	code	much	earlier	before	the	server	has	started.	Using	this	new	Lifecycle	API,	we	will	now	allow	plugins	to	start
running	code	on	an	event-based	system	much	earlier	in	server	initialization	as	well.	Java:	@Override	public	void	onEnable()	{	final	LifecycleEventManager	lifecycles	=	this.getLifecycleManager();	lifecycles.registerEventHandler(LifecycleEvents.DUMMY_STATIC.newHandler(event	->	{	final	DummyResourceRegistrar	registrar	=	event.registrar();
System.out.println("dummy_static	hook	FIRST");	}).priority(-1));	lifecycles.registerEventHandler(LifecycleEvents.DUMMY_STATIC.newHandler(event	->	{	final	DummyResourceRegistrar	registrar	=	event.registrar();	System.out.println("dummy_static	hook	FOURTH	(monitor)");	}).monitor());
lifecycles.registerEventHandler(LifecycleEvents.DUMMY_STATIC.newHandler(event	->	{	final	DummyResourceRegistrar	registrar	=	event.registrar();	System.out.println("dummy_static	hook	THIRD");	}).priority(100));	}	See	more	information	here	Using	the	Lifecycle	API	mentioned	above,	we	will	also	support	command	registration	through	this
system	through	brigadier.	This	will	allow	these	commands	to	be	usable	in	things	like	datapack	functions.	This	API	will	also	support	adding	custom	serverside	arguments	and	more,	allowing	a	more	powerful	approach	compared	to	the	current	Bukkit	command	API.	Java:	CommandBuilder.of(plugin,	"admin")	.then(
LiteralArgumentBuilder.literal("execute")	.redirect(Bukkit.getCommandDispatcher().getRoot().getChild("execute")))	.then(LiteralArgumentBuilder.literal("signed_message").then(RequiredArgumentBuilder.argument("msg",	VanillaArguments.signedMessage()).executes((context)	->	{	MessageArgumentResponse	argumentResponse	=	context.
getArgument("msg",	MessageArgumentResponse.class);	//	Gets	the	raw	argument.	//	This	is	a	better	way	of	getting	signed	messages,	//	includes	the	concept	of	"disguised"	messages.	argumentResponse.resolveSignedMessage("msg",	context)	.thenAccept((signedMsg)	->	{	Component	comp	=	Component.text("STATIC");	context.getSource()
.getBukkitSender()	.sendMessage(signedMsg,	ChatType.SAY_COMMAND.bind(comp));	});	return	1;	}))))	.description("Cool	command	showcasing	what	you	can	do!")	.aliases("alias_for_admin_that_you_shouldnt_use",	"a")	.register();	See	more	information	here	We've	recently	introduced	autogenerated	API	keys	in	our	API,	and	in	general	are	closing
the	gap	allowing	us	to	properly	implement	custom	type	registration.	In	this	API,	we	finally	allow	custom	types	to	be	registered	and	we	allow	the	modification	of	pre-existing	entries,	allowing	you	to	safely	make	modifications	to	registered	vanilla	types.	Java:	static	final	TypedKey	NEW_EVENT	=	GameEventKeys.create(Key.key("machine_maker",
"best_event"));	@Override	public	void	bootstrap(@NotNull	BootstrapContext	context)	{	final	LifecycleEventManager	lifecycles	=	context.getLifecycleManager();	//	registers	a	new	handler	for	the	prefreeze	event	for	the	game	event	registry	lifecycles.registerEventHandler(RegistryEvents.GAME_EVENT.preFreeze().newHandler(event	->	{	//	the
RegistryView	provided	here	is	writable	so	you	can	register	new	objects	event.registry().register(NEW_EVENT,	builder	->	{	builder.range(2);	});	}));	//	registers	a	handler	for	the	addition	event	lifecycles.registerEventHandler(RegistryEvents.GAME_EVENT.newAdditionHandler(event	->	{	//	checks	if	the	object	being	registered	is	the	block	open	game
event	if	(event.key().equals(GameEventKeys.BLOCK_OPEN))	{	//	multiplies	the	range	by	2	event.builder().range(event.builder().range()	*	2);	}	}));	}	See	more	information	here	Although	not	directly	related	to	Paper's	API,	we	also	have	been	hard	at	work	building	a	stable	platform	for	working	on	the	server	in	the	future.	Through	Mache	and	Codebook,
we	have	been	able	to	create	a	stable	way	of	deobfuscating	the	game	in	a	way	more	friendly	than	before.	More	work	than	ever	is	being	put	into	our	tech	for	hard	forking,	and	we	are	excited	to	be	able	to	work	off	of	some	of	the	best	tech	developed	for	deobfuscation.	Stable	Paper	and	Velocity	1.20.4	builds	have	been	released!	As	always,	backups	are
absolutely	mandatory.	After	upgrading	your	world	to	1.20.4,	you	cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update	(a	lot	of	people	and	work	needed	for	a	minor	update,	once	again):If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	From	now	on,	instead	of	creating	a
new	Discord	channel	for	every	update,	we	will	post	important	milestone	updates	(such	as	the	availability	of	experimental	builds)	into	the	new	update-announcements	channel	and	provide	more	small-stepped	info	in	the	forum	channel	below	it.	You	might	have	to	add	these	channels	to	your	list	via	"Channels	&	Roles"	at	the	top	of	the	channel	list	first.
With	the	new	sendResourcePacks	and	removeResourcePacks	methods,	you	can	give	each	pack	its	own	UUID	to	be	individually	added	and	removed	later,	which	means	that	you	can	have	multiple	packs	applied	at	once!	The	existing	setResourcePack	method	will	override	all	previous	ones	to	retain	expected	behavior.	Keyed	provides	a	NamespacedKey
getKey()	to	get	keys	for	biomes,	item	and	block	types,	sounds,	etc.	However,	trim	patterns	and	trim	materials	mark	the	first	two	registry	based	objects	that	do	not	require	a	key	in	all	cases,	hence	the	nonnull	getKey	method	is	not	valid	for	these.	To	make	your	plugins	future	proof	of	such	cases,	please	use	the	newly	added	Registry#getKey(Object).
While	the	getKey	methods	will	be	available	until	actually	broken,	using	the	method	on	Registry	will	make	sure	your	plugin	does	not	suddenly	break	later.	Note	that	because	of	the	possibility	of	no	key	existing,	this	method	is	nullable.	If	you	are	sure	one	will	exist,	you	can	also	use	the	nonnull	Registry#getKeyOrThrow.	As	per	the	last	big	announcement,
we	now	have	our	own	website	for	you	to	upload	your	Paper,	Bungee,	and	Velocity	plugins	to:	If	you	don't	feel	like	manually	uploading	your	builds	to	it,	you	can	also	check	out	our	hangar	publish	gradle	plugin:	Additionally,	we	have	prepared	a	little	Christmas	gift	for	all	(current	or	future)	Hangar	users:	You	can	now	use	your	GitHub,	Google	or
Microsoft	account	to	login	to	Hangar.	If	you	don't	have	an	account	yet,	you	can	signup	using	one	of	these	OAuth	providers	on	the	signup	page,	if	you	want	to	link	an	OAuth	account	to	your	existing	account	you	can	do	so	in	the	security	settings.	Note	that	this	functionality,	while	thoroughly	tested,	is	still	a	bit	experimental	and	the	UX	of	the	flows	and
the	design	of	the	UI	is	still	subject	to	change.	Please	send	us	your	feedback	on	Discord	or	via	the	issue	tracker.	Stable	Paper	and	Velocity	1.20.2	builds	have	been	released!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.20.2,	you	cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked
on	this	update	(a	lot	of	people	and	work	needed	for	a	minor	update!):If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	Due	to	larger	network	changes	and	perfectly	timed	holidays	of	a	few	of	our	devs,	it	took	a	little	longer	to	get	Velocity	ready	for	1.20.2.	Plugins	manually	sending	packets	will	need	updating.	The	most
notable	change	in	user	behavior	here	is	that	on	server	switches,	the	Minecraft	client	will	now	drop	its	current	resource	pack,	meaning	it	will	have	to	be	re-sent	if	you	want	to	keep	it	across	backend	servers.	Velocity	will	re-apply	the	pack	you	set	via	Velocity	API,	but	if	you	send	it	on	the	Paper	server,	you	will	need	to	do	so	on	more	than	just	the	hub.
This	is	unavoidable	at	the	moment,	but	we're	hopeful	that	Mojang	is	going	to	address	this	in	a	future	update.	While	Waterfall	received	support	for	1.20.2	pretty	early	on	as	part	of	BungeeCord	upstream	updates,	its	support	was	pretty	broken	for	the	first	few	days	and	weeks	after	the	release	and	still	does	not	properly	handle	the	new	protocol	changes
in	some	places.	In	general,	Waterfall	is	unlikely	to	receive	our	full	attention	given	that	Velocity	is	meant	to	be	its	more	performant,	stable,	and	secure	successor.	In	similar	fashion	to	us	retiring	Travertine	a	while	ago,	the	same	will	happen	to	Waterfall	in	the	future.	For	now	though,	we	will	continue	providing	you	with	upstream	updates	at	the	very
least.	This	is	very	important	if	you	for	whatever	reason	use	reflection	to	either	parse	the	relocated	package	version.	call	CB	internals.	At	some	point	in	the	future,	we	will	only	provide	jars	without	relocation,	given	it	is	a	nonsensical	practice	resulting	in	unavoidably	bad	code	design	and	unexpected	incompatibilities	in	a	large	number	of	plugins.	While
we	will	be	able	to	automagically	remap	both	direct	and	reflective	calls	to	the	relocated	package,	parsing	the	package	version	is	not	supported	and	WILL	break	at	some	point	in	the	future.	The	changes	we	have	planned	should	make	working	with	internals	a	lot	easier,	since	we	recognize	that	sometimes	(though	not	as	often	as	some	might	think)	there	is
no	better	alternative.	If	you	reflect	on	CB	classes	Easy,	just	don't	try	to	parse	the	package	version.	The	following	will	work	on	servers	with	and	without	CB	relocation:	Java:	private	static	final	String	CRAFTBUKKIT_PACKAGE	=	Bukkit.getServer().getClass().getPackage().getName();	public	static	String	cbClass(String	clazz)	{	return
CRAFTBUKKIT_PACKAGE	+	"."	+	clazz);	}	Class.forName(cbClass("entity.CraftBee"))	If	you	try	to	parse	the	server	version	Do	NOT	do	this:	Java:	String	craftBukkitPackage	=	Bukkit.getServer().getClass().getPackage().getName();	//	This	is	the	*bad*	part,	including	any	other	parsing	of	the	version	String	version	=
craftBukkitPackage.substring(craftBukkitPackage.lastIndexOf('.')	+	1);	if	(version.equals("v1_20_R1"))	{	//	...	}	else	{	//	Unsupported	}	Instead,	use	long-standing	API:	Java:	//	Paper	method	that	was	added	in	2020	//	Example	value:	1.20.1	String	minecraftVersion	=	Bukkit.getServer().getMinecraftVersion();	//	Bukkit	method	that	was	added	in	2011	//
Example	value:	1.20.1-R0.1-SNAPSHOT	String	bukkitVersion	=	Bukkit.getServer().getBukkitVersion();	if	(minecraftVersion.equals("1.20.1"))	{	//	...	}	else	{	//	Assume	latest	still	works,	or	error	as	unsupported	//	Alternatively	for	extra	compatibility,	check	if	//	the	latest	package	version	is	valid	by	catching	//	ClassNotFoundException	with:
Class.forName("org.bukkit.craftbukkit.v1_20_R1.CraftServer")	}	The	Minecraft	version	strings	you	can	parse	and	evaluate	to	your	heart's	content.	Another	(less	recommended)	alternative	is	getting	the	server	protocol	version	from	Bukkit.getUnsafe.	Enums	such	as	Biome	implementing	the	Keyed	interface	will	be	converted	to	classes	with	public	static
final	objects	at	some	point.	While	some	backwards	compatibility	will	be	provided,	please	try	to	avoid	the	use	of	switch	statements,	EnumMap	and	EnumSet	on	these,	including	the	Material	enum.	With	the	protocol	changes	comes	the	ability	to	send	a	resource	pack	before	the	player	has	even	joined	the	world,	making	previously	required	precautions
like	resource	pack	servers	unnecessary.	Finally,	it	also	sends	its	client	settings	(including	the	language)	before	this	as	well.	Due	to	heavy	work	on	the	update	itself,	we	haven't	yet	been	able	to	add	API	for	this,	but	we	will	let	you	know	once	it	is	added!	As	per	the	last	big	announcement,	we	now	have	our	own	website	for	you	to	upload	your	Paper,
Bungee,	and	Velocity	plugins	to:	If	you	don't	feel	like	manually	uploading	your	builds	to	it,	you	can	also	check	out	our	hangar	publish	gradle	plugin:	We’re	happy	to	announce	that	initial	builds	for	Paper	1.20	have	been	released.	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.20,	you	cannot	downgrade	back	to	a	lower
version!	We	would	like	to	thank	everyone	that	worked	on	this	update:Next	to	those	people,	you	can	find	links	to	support	them	individually.	If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	Future	changes	regarding	API	enums	Enums	such	as	Biome	implementing	the	Keyed	interface	will	be	converted	to	classes	with
public	static	final	objects	at	some	point.	While	some	backwards	compatibility	will	be	provided,	please	try	to	avoid	the	use	of	switch	statements,	EnumMap	and	EnumSet	on	these,	including	the	Material	enum.	1.20	API	changes	With	1.20,	there	is	of	course	new	API	for	the	new	features.	Some	notable	breaks	are:	SmithingRecipe	has	been	replaced	with
SmithingTrimRecipe	and	SmithingTransformRecipe	InventoryType.SMITHING	now	uses	1.20's	new	smithing	table	interface	Sign#isEditable()	has	been	deprecated	in	favor	of	a	new	method	called	isWaxed,	same	for	its	setter	API	scheduled	for	removal	A	bunch	of	old	API	has	been	scheduled	for	removal	in	1.21,	so	please	make	sure	you	remove	usages
of	these	in	your	plugins:As	per	the	last	big	announcement,	we	now	have	our	own	website	for	you	to	upload	your	Paper,	Bungee,	and	Velocity	plugins	to.	There	have	been	little	updates	in	the	past	few	weeks	due	to	us	being	busy	with	other	projects,	including	Paper,	but	rest	assured	we'll	keep	working	on	it!	Our	downloads	API	has	different	channels	to
distinguish	builds	-	right	now	between	experimental	and	default.	For	future	updates,	we	will	no	longer	provide	any	early	experimental	builds	on	Discord,	instead	using	the	experimental	channel	in	our	downloads	API.	This	means	that	you	will	need	to	distinguish	between	channels	in	your	scripts	to	avoid	getting	highly	experimental	and	potentially
breaking	versions.	Please	adjust	your	download	scripts	accordingly.	Experimental	builds	marked	as	such	will	be	available	to	download	on	our	homepage	as	well.	Once	again,	we	have	another	exciting	announcement	for	you,	this	time	about	PaperMC's	own	site	for	uploading	and	downloading	Paper,	Velocity,	and	Waterfall	plugins,	called	Hangar!	The
main	reason	we	started	working	on	this	is	to	finally	provide	a	centralized	place	for	Paper	and	Velocity	plugins.	Compared	to	the	Spigot	forums,	Hangar	allows	you	much	more	control	over	your	resource	in	terms	of:	adding	other	authors	to	your	project,	creating	organizations	with	projects	under	them,	managing	roles	per	project	or	per	organization
(such	as	editor	or	developer)	combined	releases	with	multiple	jars	or	external	links	per	platform,	customizable	release	channels	(such	as	beta	or	snapshot),	a	proper,	documented	API	to	upload	and	download	plugins	(OpenAPI	yaml),	creating	multiple	project	description/wiki	pages,	selecting	compatibility	with	minor	Minecraft	versions	as	well	as
specific	Velocity	versions,	additional	tags	to	mark	a	plugin	as	an	addon,	a	library,	or	Folia	compatible,	a	secure	account	system	with	support	for	modern	multi	factor	authentication	standards	like	TOTP	and	WebAuthN	(YubiKeys	are	supported!)	...	and	more.	As	Hangar	is	still	in	beta,	we	intend	on	adding	a	lot	more	features	and	quality	of	life	changes,
such	as	the	ability	to	set	notifications	per	release	channel	and	creating	draft	releases.	You	can	follow	up	on	our	current	plans	in	the	Hangar	roadmap	project:	.	There	are	of	course	other	such	resource	sites	already,	such	as	CurseForge	and	Modrinth,	however,	we	have	made	Hangar	specifically	with	Paper	and	Velocity	plugins	in	mind,	so	that	you	can
have	the	best	experience	looking	for	plugins	or	uploading	them	to	Hangar.	We	have	already	made	a	Gradle	plugin	you	can	use	to	automatically	upload	new	version	releases,	which	you	can	find	here	with	examples	provided:	-	so	the	only	thing	that	stands	between	you	and	your	first	uploaded	version	is	creating	an	account	and	a	project	on	Hangar!
Additionally,	for	developers	who	published	to	the	Spigot	forums	before,	we	created	an	importer	for	that!	You	can	find	it	here	.	It	will	attempt	to	import	the	description	and	convert	it	to	Markdown,	set	the	project	avatar	and	basic	settings	such	as	the	category	to	make	it	as	easy	as	possible	for	you	to	adopt	Hangar	for	your	projects.	Do	note	however	that
you	will	have	to	upload	your	versions	manually	after	you	imported	your	projects!	If	you	happen	to	find	any	bugs,	you	can	report	them	on	our	issue	tracker:	.	If	you	want	a	testing	grounds	for	the	API,	please	use	our	staging	instance.	Let	me	end	this	post	with	a	bit	of	a	personal	note:	Hangar	was	born	out	of	a	discussion	on	the	Papers	Discord/IRC
channel,	after	being	annoyed	by	existing	platforms,	almost	3	years	ago.	First	it	was	a	from-scratch	project,	then	we	forked	Ore	(the	platfrom	repository	made	by	the	Sponge	project),	then	we	rewrote	Ore's	frontend,	then	we	rewrote	the	backend,	then	we	rewrote	the	frontend,	again.	It	has	been	quite	a	wild	ride,	with	many	ups	and	downs.	The	lowest
point	was	December	last	year:	We	weren't	getting	anywhere,	I	thought	everything	we	had	sucked,	we	were	exploring	alternatives	internally,	I	started	modifying	existing	software	for	our	needs.	Basically,	I	was	ready	to	give	up.	In	the	end,	we	decided	to	not	go	that	route,	the	Paper	team	assured	me	that	what	we	had	at	that	time	was	already	better	than
other	existing	solutions	and	so	I	pushed	through	all	that	together	with	Kenny,	without	whom	I	would	have	never	be	able	to	do	that.	So	I'll	end	with	thanking	him,	Machine_Maker,	AlessioGr,	mdcfe	and	all	the	other	contributors,	the	Paper	team,	the	people	on	the	Hangar	Discord,	the	plugin	developers	who	where	invited	as	early	adopter	and	everybody
else	who	tested	Hangar	over	the	years	and	provided	valuable	feedback,	and	generally	everybody	in	the	Paper	community	who	pinged	me	daily	to	remind	me	that	Hangar	means	something	to	them:	You	were	annoying	as	heck,	but	I	am	glad	you	did	it.	And	now	everybody	go	sign	up!	Paper	1.19.4	and	Velocity	with	1.19.4	support	are	now	available	on
our	website!	As	always,	we	recommend	that	you	make	a	backup	of	your	server	before	upgrading.	Remember	that	you	cannot	downgrade	your	Paper	server	after	doing	the	update.	Despite	only	being	a	minor	version,	once	again,	quite	a	bit	of	work	has	gone	in	the	update.	We	would	like	to	thank	the	following	people	for	their	work	on	the	update	process:
This	is	the	last	warning	regarding	the	experimental	channel	on	our	downloads	API	before	we	will	publish	experimental	builds	of	the	next	major	Minecraft	release	(1.20)	to	the	downloads	API	instead	of	as	separate	builds	while	still	considered	unstable.	For	future	updates,	we	will	no	longer	provide	any	early	experimental	builds	on	Discord,	instead
using	the	experimental	channel	in	our	downloads	API.	This	means	that	you	will	need	to	distinguish	between	channels	in	your	scripts	to	avoid	getting	highly	experimental	and	potentially	breaking	versions.	Please	adjust	your	download	scripts	accordingly.	Experimental	builds	marked	as	such	will	be	available	to	download	on	our	homepage	as	well.	Our
new	website	is	now	live	at	Cubxity	has	been	working	on	this	with	us	for	a	while,	and	we're	happy	to	finally	be	able	to	replace	our	old	site	that	has	been	an	annoyance	to	maintain	for	quite	some	time.	Feedback	is	of	course	appreciated,	the	same	applies	to	code	contributions:	API	changes	Experimental	features	have	representation	in	API,	but	are
marked	as	experimental	and	are	subject	to	changes,	as	Mojang	might	still	change	them	in	major	ways	before	they	land	in	1.20.	See	here	for	more	information	on	experimental	features	in	general.	Using	adventure's	ClickEvent.callback	methods,	you	can	now	easily	register	message	click	event	callbacks	without	having	to	keep	track	of	them	yourself.
This	code	for	example	will	create	a	click	event	to	open	a	book	that	can	be	used	for	up	to	2	minutes	and	has	5	uses:	Java:	ClickCallback.Options	options	=	ClickCallback.Options.builder()	.lifetime(Duration.ofMinutes(2))	.uses(5)	.build();	ClickEvent	clickEvent	=	ClickEvent.callback(audience	->	audience.openBook(book),	options);
player.sendMessage(Component.text().content("Click	me!").clickEvent(clickEvent));	In	these	methods,	you	can	also	make	sure	only	a	certain	player/players	with	a	certain	permission	are	allowed	to	use	the	callback.	LivingEntity#setHurtDirection	throws	an	UnsupportedOperationException	if	called	on	a	non-player	HopperMinecart#setCooldown	and
getCooldown	throw	UnsupportedOperationException	WIP	registry	modification	API	Machine	Maker	has	been	working	on	API	to	be	able	to	modify	certain	Minecraft	registries,	including	damage	events.	Before	merging	it,	we	would	like	to	gather	a	last	round	of	community	feedback	on	it:	Additionally	there	is	a	second	pull	request	to	add	API	for
modifying	tags,	used	by	the	client	in	a	lot	of	different	ways,	including	knowing	which	blocks	are	climbable	and	which	tool	you	can	use	to	faster	dig	a	block:	Future	changes	regarding	API	enums	Enums	such	as	Biome	implementing	the	Keyed	interface	will	be	converted	to	classes	with	public	static	final	objects	at	some	point.	While	some	backwards
compatibility	will	be	provided,	please	try	to	avoid	the	use	of	switch	statements,	EnumMap	and	EnumSet	on	these.	Paper	1.19.3	and	Velocity	with	1.19.3	support	are	now	available	on	our	website!	Even	though	Paper	is	deemed	stable,	we	still	recommend	that	you	make	a	backup	of	your	server	before	upgrading.	Remember	that	you	cannot	downgrade
your	Paper	server	after	doing	the	update.	Despite	only	being	a	minor	version,	quite	a	bit	of	work	has	gone	in	the	update.	We	would	like	to	thank	the	following	people	for	their	work	on	the	update	process:	As	explained	in	a	minecraft.net	article,	Mojang	now	includes	experimental	feature	previews	of	upcoming	Minecraft	versions.	On	servers,	they	can	be
enabled	by	adding	update_1_20	to	the	initial-enabled-packs	option	in	the	server	properties	file	(with	entries	separated	with	a	comma)	and	will	be	applied	to	newly	generated	worlds.	We	do	not	recommend	enabling	these	feature	packs	on	production	servers,	as	the	features	that	come	with	them	(such	as	Camels	and	the	new	bamboo	blocks)	will	not
survive	world	upgrades	and	are	still	riddled	with	bugs.	We	do	not	provide	support	for	these	experimental	features	and	will	not	fix	any	issues	with	them,	unless	the	issue	in	question	is	caused	by	one	of	our	patches	and	can	affect	other	parts	of	the	server	as	well.	Removal	of	Chat	Previews	As	part	of	1.19.3,	Mojang	have	removed	the	chat	preview
functionality	in	its	entirety.	This	means	you	cannot	make	players	sign	messages	that	have	been	changed	by	the	server	(unless	only	formatting	of	the	message	has	been	changed)	and	other	players	will	be	able	to	see	the	unmodified	chat	message	if	they	hover	over	a	modified	one.	However,	this	does	not	affect	AsyncChatDecorateEvent	and
AsyncChatCommandDecorateEvent;	going	forward,	we	will	mostly	likely	encourage	changing	a	message's	content	through	the	decorate	events,	with	changes	to	viewers	and	the	chat	type	being	done	in	AsyncChatEvent.	Finalized	changes	to	API	regarding	chat	and	signed	chat	will	be	held	off	until	1.20	so	it	is	less	likely	to	break	again	with	Mojang	still
doing	such	major	changes	to	the	system.	Experimental	features	Plugin	developers	can	prepare	their	plugins	for	these	features	with	prelimary	API,	but	be	aware	that	most	of	the	API	representations	of	the	experimental	features	are	likely	to	change	before	they	are	finalized	by	Mojang.	These	classes,	fields,	etc.	will	be	marked	with	an	@Experimental
annotation.	We've	seen	a	lot	of	reports	of	a	new	malware	going	around	Minecraft	servers.	It	seems	to	be	spread	by	compromised	Spigot	plugin-author	accounts,	and	is	somewhat	difficult	to	detect.	We	do	know	that	the	following	exception	is	caused	by	it:	Code:	java.net.NoRouteToHostException:	No	route	to	host	If	you	see	this	in	your	logs,	that	server
is	most	likely	infected.	There	are	other	indicators	too	-	the	compromised	JAR	will	have	inside	of	it	a	file	called	plugin-config.bin.	We	do	have	a	one-liner	for	searching	for	this	in	your	plugin	directories,	if	you're	on	a	Linux	system:	Code:	grep	-R	"plugin-config.bin"	.	If	you're	on	a	Windows	system	you	can	run	this	command	in	your	plugins	directory:
Code:	findstr	/sml	/c:"plugin-config.bin"	*	Run	the	above	while	in	your	server	or	plugin	directory,	and	if	you	get	a	match,	you	likely	have	an	infected	plugin.	If	you	do	not	get	a	match,	that	is	a	good	thing	-	you	are	likely	not	infected.	@Optic_Fusion1	's	AntiMalware	tool	on	has	caught	onto	this	malware	about	a	month	ago	already	and	catches	more
variants	of	it.	We	highly	suggest	users	run	this	tool	as	it	contains	checks	for	a	lot	more	malware	sources.	If	this	tool	reports	any	malware	found,	be	sure	to	double	check	whether	it's	a	false	positive	or	not	(known	example:	ForceOP	check	falsely	triggers	on	a	handful	of	plugins	because	of	how	it's	used	in	plugins).	If	you	do	get	a	match	or	think	that	you
are	infected,	you	should	delete	all	of	your	JAR	files	and	re-download	them,	as	the	malware	spreads	itself	to	other	JARs.	You	should	also	immediately	reinstall	your	machine,	as	this	malware	is	known	to	install	system	services	outside	of	Minecraft.	It	might	be	more	effort,	but	it	is	important	that	infected	machines	are	reinstalled,	or	else	the	malware	will
remain.	If	you	frequently	download	plugins	from	third-party	sources	e.g.	SpigotMC,	it's	not	a	bad	idea	to	do	routine	checks	with	this	tool	e.g.	once	a	month	or	so.	Remember	to	only	download	reputable	plugins	from	reputable	sources	&	authors.	Keep	an	eye	out,	and	thanks.	We	are	excited	to	announce	that	Paper	1.19.1	is	now	available!	As	far	as	we
know,	it	is	in	a	good	state	for	production	use	-	however,	it	is	still	early	in	the	release	cycle	and	new	bugs	may	be	discovered	at	any	time,	so	we	recommend	that	you	make	a	backup	of	your	server	before	upgrading.	We	have	received	a	great	deal	of	concern	regarding	our	stance	and	support	for	the	new	chat	signing	aspect	of	Minecraft.	As	such,	we
figure	it	best	to	clear	up	a	few	points	in	this	announcement.	First:	Paper	will	add	support	to	its	API	so	that	plugins,	servers,	and	developers	that	wish	to	use	these	features	have	the	ability	to	without	hindrance	from	us.	Second:	Servers,	plugins,	and	developers	that	wish	to	disable	chat	signing	will	also	have	the	ability	to	do	so	without	any	hindrance
from	us.	We	will	not	enforce	the	use	of	Minecraft's	chat	signing	features	nor	will	we	use	our	software	to	actively	prevent	the	bypassing	of	these	new	safety	features.	Third:	We	may	choose	to	implement	restrictions	on	our	community's	discussion	of	the	bypassing	of	chat	safety	features.	Similarly	to	offline	mode	servers,	we	would	not	at	the	same	time
prevent	people's	actually	doing	it,	and	will	leave	that	decision	up	to	each	server	owner	and	anyone	using	our	software.	Fourth:	Paper	is	not	so	involved	with	Mojang	as	to	be	able	to	make	changes	or	decisions	on	this	new	system.	Mojang	has	generally	been	involved	with	the	community	for	years	in	multiple	ways,	but	we	have	done	all	that	we	can	do	by
bringing	up	various	concerns	about	the	new	system	with	them	and	leaving	it	in	their	hands.	Finally:	There	is	more	information	on	the	new	system	at	.	This	is	accurate	information	as	far	as	we	know,	and	will	be	updated	as	new	information	is	made	available.	If	you'd	like	to	help	the	project's	infrastructure	costs,	feel	free	to	check	out	-	we	greatly
appreciate	your	continued	support!	Also,	a	special	thanks	to	kennytv	and	Machine	Maker	for	their	extraordinary	help	on	this	update.	They	both	have	GitHub	Sponsors	if	you'd	like	to	contribute	directly	to	them!	We	recently	announced	on	our	discord	that	a	new	chunk	system	is	in	development	and	needs	testing.	It	has	been	updated	to	include	1.19.1.
You	can	find	more	information	at	the	PR	on	our	GitHub.	Please	do	not	test	this	on	worlds	that	are	not	backed	up,	or	on	production	servers,	as	it	is	unstable	and	will	probably	break	things.	We	appreciate	any	help	in	identifying	and	reporting	bugs	-	please	report	anything	broken	on	the	same	PR,	linked	again	here.	One	more	reminder	to	please	back	up
your	server	before	upgrading	to	1.19.1	-	it	is	very	important	to	do	this!	We’re	happy	to	announce	that	initial	builds	for	Paper	1.19	have	been	released.	We	were	able	to	fix	a	lot	of	issues	already,	but	there	might	still	be	breaking	ones,	so	as	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.19,	you	cannot	downgrade	back	to	a
lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update.	Not	only	the	people	actually	working	on	the	code,	but	everyone	that	provided	feedback,	helped	us	test,	has	been	patient,	and	the	people	that	joined	us	in	VC	or	on	Twitch	(where	over	400	people	watched	Kenny	stream	at	one	point!).	We	would	like	to	especially	thank	the
following	people:Next	to	those	people,	you	can	find	links	to	support	them	individually.	If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	Starting	with	1.19,	the	Paper	configuration	files	will	now	be	split	into	multiple	parts.	Instead	of	having	one	giant	paper.yml	file	for	everything,	there	are	now	two	files	in	a	newly	created
config	directory:	paper-global.yml,	where	you	can	configure	options	that	apply	to	the	whole	server,	and	paper-world-defaults.yml,	where	you	can	set	default	per-world	values;	you	can	change	the	directory	from	config	to	any	directory	you	like	with	the	new	--paper-settings-directory	command	line	argument.	The	per-world	configuration	has	been	split
into	each	individual	world	directory	(paper-world.yml),	so	for	example,	for	the	world	world_the_end,	you	will	find	the	configuration	file	at	world_the_end/paper-world.yml.	In	addition	to	this,	all	configurable	messages	inside	of	Paper	configs	use	the	MiniMessage	format	from	now	on.	This	means	that	legacy	formatting	(&	or	§	codes)	will	no	longer	work
in	the	paper	configs.	Instead,	you	use	MiniMessage,	which	allows	modern	formatting	with	RGB	colors,	gradients,	translatable	components,	and	a	lot	more.	You	can	find	more	information	about	MiniMessage	here:	To	try	out	MiniMessage	formatting,	you	can	use	this	live-previewing	website:	.	Your	current	configuration	files	will	be	migrated	into	the
new	format	automatically	while	keeping	all	of	your	previous	settings.	Your	old	paper.yml	will	automatically	be	backed-up	into	config/legacy-backup/paper.yml.old.	Our	documentation	will	be	updated	over	the	next	couple	of	weeks	to	reflect	those	changes.	Alternate	Current	redstone	implementation	About	a	month	ago,	Space	Walker	ported	his	Fabric
mod	to	Paper,	allowing	us	to	offer	another	redstone	implementation:	Alternate	Current.	You	can	enable	it	by	changing	the	per-world	setting	redstone-implementation	to	alternate-current.	As	of	now,	Alternate	Current	is	faster	and	more	stable	than	the	already	implemented	Eigencraft	option	(and	a	lot	faster	than	Vanilla's	redstone),	but	its	behavior
slightly	deviates	from	Vanilla	in	certain	edge	cases,	such	as	the	order	of	surrounding	block	updates.	Read	more	about	Alternate	Current	and	how	it	differs	from	other	redstone	implementations	on	its	README.	Signed	chat	messages	Minecraft	1.19	introduced	client-side	signing	of	chat	messages,	allowing	other	clients	to	verify	a	message	has	been	sent
by	the	player,	delivered	verbatim	and	unmodified	by	the	server.	In	the	future,	the	client	will	most	likely	visually	distinguish	signed	player	messages,	unsigned	player	messages,	and	system	messages.	Because	we	want	to	avoid	issues	with	upstream	compatibility	and	duplicate	work,	we	are	not	yet	able	to	provide	an	API	for	that	system.	Currently,	all
messages	will	be	sent	as	(unsigned	and	unverified)	system	messages	–	this	has	no	meaningful	impact	on	how	clients	display	these	messages	yet.	With	Mojang	trying	to	make	the	player	chat	more	secure,	we	will	have	to	make	some	larger	additions	and	changes	around	message	events	and	API	in	the	future	to	allow	features	like	the	ability	to	preview
formatted	messages	on	the	client.	MiniMessage	methods	in	API	After	the	inclusion	of	MiniMessage	in	our	API	in	1.18,	we	have	now	added	sendPlainMessage(String)	and	sendRichMessage(String)	methods	to	the	CommandSender	interface	to	make	developers	more	aware	of	the	distinction	between	legacy,	plain,	and	MiniMessage	text	formatting	–	we
strongly	discourage	the	use	of	the	old	sendMessage(String)	methods	using	legacy	formatting.	Configurate	We	are	currently	not	exposing	Configurate,	the	library	now	used	to	manage	Paper	configurations,	via	our	API.	It	will	be	exposed	once	Configurate	receives	more	updates	to	make	it	more	user	friendly	for	use	in	plugins.	Our	downloads	API	has
different	channels	to	distinguish	builds	-	right	now	between	experimental	and	default.	The	first	few	1.19	builds	were	released	in	the	experimental	channel,	which	has	now	been	changed	back	to	the	default	channel.	For	future	updates,	we	will	no	longer	provide	any	early	experimental	builds	on	Discord,	instead	using	the	experimental	channel	in	our
downloads	API.	This	means	that	you	will	need	to	distinguish	between	channels	in	your	scripts	to	avoid	getting	highly	experimental	and	potentially	breaking	versions.	Please	adjust	your	download	scripts	accordingly.	Experimental	builds	marked	as	such	will	be	available	to	download	on	our	homepage	as	well.	We	are	now	releasing	initial	builds	for
1.18.2.	These	have	been	tested	by	our	team	over	the	last	few	days	and	we	were	able	to	iron	out	quite	a	few	issues,	but	you	should	still	be	careful.	These	are	early	builds,	they	may	contain	breaking	issues,	backups	are	absolutely	mandatory!	After	you	update,	you	cannot	downgrade	your	world	back	to	1.18.1	or	lower	again!	As	always,	we	would	like	to
thank	everybody	who	contributed	to	this	update,	be	it	by	contributing	code,	reporting	issues	or	just	discussing	changes	with	us	in	voice	chat	and	cheering	us	on.	In	particular,	we	would	like	to	thank	the	following	developers:	You	can	also	support	the	PaperMC	project	itself,	you	can	find	more	information	about	that	here:	MiniMessage	included	in	Paper
API	Since	MiniMessage	is	now	stable,	we	have	decided	to	include	it	in	the	Paper	API.	For	those	who	don’t	know	what	MiniMessage	is	yet;	it’s	a	simple,	user-friendly,	string	representation	of	Minecraft’s	chat	components,	perfect	for	use	in	config	files.	You	can	learn	more	about	it	here,	and	be	sure	to	check	out	the	Web	UI	to	start	playing	with
MiniMessage	now!	Note:	While	MiniMessage	is	now	packaged	with	the	API	and	available	for	plugins	to	use,	it	is	not	currently	used	by	Paper	itself.	In	the	future,	we	plan	to	migrate	all	configurable	messages	over	to	MiniMessage,	allowing	for	much	more	control	over	the	styling	of	configurable	messages!	StructureLocateEvent	replacement	Due	to	a	lot
of	internal	restructuring	in	Vanilla,	the	StructureLocateEvent	has	been	replaced	by	the	StructuresLocateEvent.	It	holds	a	list	of	ConfiguredStructures	(as	opposed	to	just	one	StructureType	previously).	The	old	event	is	no	longer	fired,	so	if	you	used	it,	you	should	update	the	API	usage	as	soon	as	possible.	Another	thing	we	would	like	to	note	is	that	we
are	working	on	a	new	documentation	site	for	the	PaperMC	organization,	which	will	replace	the	various	documentation	sites	currently	in	use.	We	are	looking	to	open	the	floor	for	discussion,	ideas,	suggestions,	and	contributions,	so	please	keep	an	eye	on	the	#docs	channel	for	more	information!	After	the	initial	release	a	bit	over	a	month	ago,	Paper
1.18.1	is	now	deemed	ready	for	use	in	production	environments.	As	with	any	upgrade,	please	ensure	you	have	a	functioning	backup	before	proceeding.	World	downgrades	are	not	supported	under	any	circumstances.	Upgrading	worlds	to	1.18	With	the	increased	world	height	that	1.18	brought,	Mojang	has	introduced	retrogen	to	allow	worlds	using	the
old	(0	to	256)	height	to	upgrade	cleanly	to	the	new	(-64	to	320)	height.	Retrogen	will	fill	in	new	caves	below	the	bedrock	layer,	allowing	you	to	explore	the	new	terrain	in	already	generated	chunks.	Should	retrogen	be	undesired,	you	can	disable	it	by	setting	below-zero-generation-in-existing-chunks	to	false	in	spigot.yml.	This	option	is	not	recommended
and	may	not	work	correctly	in	conjunction	with	--forceUpgrade	or	with	worlds	older	than	1.14.	Mojang	has	also	introduced	world	blending	to	cleanly	transition	from	old	to	new	generation	at	the	border	of	chunks	that	have	not	been	generated	before.	Changes	to	Anti-Xray	and	ore	generation	Ores	can	now	generate	a	lot	higher	than	before,	so	you	might
need	to	adjust	your	Anti-Xray	settings.	We	have	increased	the	default	max-block-height	to	64,	but	you	might	want	to	increase	it	even	further.	Please	be	aware	that	higher	numbers	might	impact	performance,	especially	with	engine-mode:	2.	See	stonar's	anti-xray	guide	and	the	updated	ore	distribution	for	more	information.	Security	fixes	to	all
Minecraft	versions	Throughout	December,	we	have	pushed	important	security	fixes	to	all	Paper	versions	from	1.8	to	1.18.	If	you	are	running	a	build	or	server	fork	older	than	that	on	any	given	version,	you	should	update	immediately.	While	we	decided	to	make	an	exception	in	pushing	the	fixes	to	legacy	versions,	we	will	never	do	this	again,	and	it	is
only	a	matter	of	time	until	a	new	major	security	issue	sees	the	light	of	day.	We	would	also	like	to	thank	the	member	of	our	community	that	made	us	aware	of	the	issue	via	the	exploit-report	channel	on	our	Discord,	which	made	it	possible	to	respond	to	the	issue	before	it	received	too	much	public	attention	and	to	have	Minecraft	as	a	whole	be	one	of	the
first	communities	to	warn	users	about	it.	Contributors	to	1.18	A	big	thank	you	to	everyone	who	contributed	to	the	update	process:	If	you	want	to	support	the	PaperMC	project,	you	can	find	more	information	here:	.	We	would	also	like	to	thank	everyone	who	watched,	chatted	and	talked	with	us	during	the	update	process.	You	are	amazing	Changes	to
Paperweight	(Paper	contributors)	Instead	of	using	the	shadowJar	and	reobfJar	Gradle	tasks	to	create	a	runnable	(but	not	distributable)	jar,	you	now	need	the	createMojmapBundlerJar	or	createReobfBundlerJar	tasks.	Similarly,	Paperclip	(distributable)	jars	are	now	created	with	the	createMojmapPaperclipJar	or	createReobfPaperclipJar	task.	You	can
get	a	full	list	of	tasks	by	running	gradlew	tasks.	An	updated,	in-depth	guide	on	contributing	to	Paper	can	be	found	here.	Paperweight	Userdev:	Working	with	NMS	in	1.17+	(Plugin	developers	using	NMS)	After	upstream	dropped	their	field	mappings	in	1.17,	the	same	now	happened	with	method	names	as	well.	Even	though	we	generally	advise	against
depending	on	server	internals,	we	understand	that	not	everything	is	possible	through	API.	As	of	now,	the	only	feasible	way	of	depending	on	server	internals	is	by	coding	against	mapped	names,	which	are	then	compiled	to	the	obfuscated	names	to	run	with	the	obfuscated	server.	Paperweight’s	Userdev	allows	you	to	do	exactly	that,	but	unlike
upstream’s	maven	plugin,	userdev	uses	full	Mojang	mappings	with	additional	yarn	parameter	mappings,	so	you	can	more	easily	update	your	plugin	whenever	a	new	Minecraft	version	is	released.	Userdev	is	the	only	supported	way	of	working	with	NMS	in	1.18+.	The	obfuscated	jar	is	no	longer	valid	to	compile	against.	To	set	up	paperweight	userdev:	A
full,	working	example	can	be	found	on	GitHub.	Both	settings.gradle.kts	and	build.gradle.kts	are	important!	Paperweight	Userdev	integrates	with	the	Gradle	Shadow	plugin,	no	special	configuration	is	required.	If	you	have	previously	used	Apache	Maven,	Gradle	supports	automatic	migration	for	the	majority	of	project	configurations.	We	would
recommend	the	Kotlin	DSL,	which	can	be	selected	via	gradle	init	--dsl	kotlin.	If	you	have	any	issues	getting	started	with	Userdev,	please	come	by	the	#paper-dev	channel	on	our	Discord.	Downloads	API	We	have	shut	down	v1	of	our	downloads	API	at	the	end	of	November.	Please	make	sure	you	are	using	v2	of	our	downloads	API	when	trying	to
download	Paper	via	scripts	and	automated	tools.	For	reference,	see	the	Downloads	API	documentation.	We	have	also	introduced	a	channel	field	to	the	build	response,	allowing	builds	to	be	marked	as	experimental.	Changes	to	the	PaperMC	team	Over	the	past	couple	of	months,	there	have	been	a	number	of	changes	to	the	PaperMC	team.	Larry	has
been	promoted	to	the	role	of	Community	Manager	and	will	be	focusing	on	the	moderation	aspects	of	the	community.	We	would	also	like	to	welcome	ocelotpotpie	to	our	moderation	team.	sulu	has	taken	the	position	of	Triage	lead	and	will	be	responsible	for	managing	the	Triage	team,	which	looks	after	our	GitHub	issues.	jmp	has	joined	the	Maintainer
team;	Proximyst	has	left	the	team,	and	we	wish	her	all	the	best!	aurora	has	left	the	development	team	to	focus	more	on	her	responsibilities	as	a	community	manager.	Welcome	to	PaperMC!	This	is	the	community	forum	space	for	our	Minecraft	software	community	-	here,	we	ask	questions,	give	answers,	and	talk	about	everything	to	do	with	our
projects.	Paper:	This	is	our	Minecraft	server	software.	It's	designed	to	be	fast,	bug-free,	and	a	breeze	to	use.	With	an	extensive	API	for	plugin	developers	to	boot,	we	work	hard	on	Paper	and	we're	proud	of	it.	Velocity:	A	recent	addition	to	the	PaperMC	community,	Velocity	is	the	most	modern,	secure,	and	highly	performant	proxy	for	Minecraft	servers
out	there.	Waterfall:	A	BungeeCord-compatible	Minecraft	server	proxy	that	might	not	be	quite	as	fast	as	Velocity,	but	is	fully	supported	and	fully	supports	any	BungeeCord	plugins	you	might	need	to	use!	Overall,	PaperMC	is	a	community	that's	excited	about	Minecraft	software	and	making	it	better,	while	also	providing	a	community	space	that's	fun	to
be	in.	We	have	a	strong	culture	of	helping	people	and	sharing	knowledge	for	the	betterment	of	everyone	involved.	Regardless	of	if	you're	a	developer,	run	a	Minecraft	server	yourself,	or	help	someone	else	do	it,	we	hope	that	you	find	yourself	welcomed	(and	welcome	others!)	whenever	you	join	us.	Whether	here,	on	Discord,	or	on	GitHub,	enjoy	your
time	in	the	PaperMC	community!	If	you	care	even	one	atom	about	stability,	no,	a	server	with	both	plugins	and	mods	is	not	possible.	They	are	2	very	different	systems	that	work	in	very	different	ways.	In	addition,	many	of	them	do	sketchy	things	to	attempt	to	fix	their	stability	issues,	i.e.	here's	a	post	from	the	EssentialsX	team	detailing	why	not	to	use
Mohist:	I'm	not	going	to	bother	responding	to	that	response	from	Mohist,	since	it	seems	it's	mostly	pushing	the	blame	onto	EssX,	and	I'm	guessing	staff	would	yell	at	me.	The	long	and	short	of	it	is,	Mohist	is	unstable,	and	has	done	sketchy	things	in	the	past,	meaning	they're	likely	to	again.	Use	it	at	your	own	risk,	and	remember	to	take	backups.	I'm	not
going	to	bother	responding	to	that	response	from	Mohist,	since	it	seems	it's	mostly	pushing	the	blame	onto	EssX,	and	I'm	guessing	staff	would	yell	at	me.	The	long	and	short	of	it	is,	Mohist	is	unstable,	and	has	done	sketchy	things	in	the	past,	meaning	they're	likely	to	again.	Use	it	at	your	own	risk,	and	remember	to	take	backups.	Yea,	Mohist	is	a	very
wierd	software,	by	me	(on	a	test	server)	it	works,	but	without	knowing	of	it's	savety	Paper	and	Velocity	1.21.3	builds	are	out	of	the	experimental	phase!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.21.3,	you	cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update:If
you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	Timings	removal​After	having	added	spark	as	our	main	profiler	for	diagnosing	causes	of	lag	in	1.21,	Timings	has	been	set	to	no-op	mode.	This	means	that	it	can	no	longer	be	enabled	or	used,	though	its	API	classes	will	remain	until	a	later	update.	As	a	developer,	please	make
sure	you	remove	any	custom	Timing	uses	by	then.	You	can	see	our	docs	page	as	well	as	the	GitHub	Discussions	page	for	more	details	and	also	provide	feedback	there.	Server	pausing	when	empty	(disabled	by	default)​Vanilla	added	a	server.properties	option	to	pause	world	and	entity	ticking	when	no	players	are	online	after	a	while.	This	behavior	is
disabled	by	default	on	Paper	because	it	is	incompatible	with	what	plugins	expect	and	might	do	with	no	players	online.	You	can	enable	it	again	by	changing	the	value	in	the	server.properties	file,	but	we	generally	recommend	against	doing	that	unless	you	are	100%	certain	your	plugins	are	compatible	with	server	pausing	or	you	may	run	into	crashes	or
save	data	issues	(they	won't	be	able	to	properly	work	with	entities	and	the	world,	or	do	other	actions	that	would	require	"active"	world	ticking).	Unlike	the	Bukkit	schedulers,	Folia's	GlobalRegionScheduler	will	not	be	ticked	while	the	server	is	paused.	If	you	ran	a	Spigot	1.21.3	server	before	switching	back	to	Paper,	we	recommend	manually	setting
pause-when-empty-seconds	to	-1	to	disable	it.	Configurable	entity	despawn	time​Under	entities.spawning.despawn-time,	you	can	now	configure	hard	despawn	times	in	ticks	for	when	an	entity	should	be	forcefully	despawned.	An	example	usecase	of	this	is	preventing	certain	projectiles	from	being	kept	alive	permanently.	This	patch	was	ported	from
Pufferfish	with	Kevin's	go-ahead.	Option	to	use	old	enderpearl	behavior​We	have	added	the	legacy-ender-pearl-behavior	config	option	to	prevent	ender	pearls	from	being	saved	to	the	player	and	loading	chunks,	meaning	they	will	behave	like	they	did	in	1.21.1	and	before.	Paper	will	default	to	the	new	vanilla	behavior.	Invulnerability	damage	reduction​
We	have	fixed	incorrect	handling	of	damage	reduction	during	invulnerable	ticks	after	being	hit	to	work	like	it	does	in	Vanilla	again.	String	duplication	fixed	by	Mojang​Mojang	fixed	string	disarming	behavior	and	its	dupe,	so	we	have	dropped	our	patch	and	configuration	option.	For	developers	In	case	you	skipped	the	1.20.5/6	update,	make	sure	to	read
its	announcement	on	Mojang	mappings	use	at	runtime	and	our	new	Brigadier	command	API.	Server	pausing​As	mentioned	in	the	above	section,	server	pausing	may	have	significant	implications	on	your	plugin's	functionality.	Please	make	sure	to	test	your	plugins	on	a	paused	server	or	to	otherwise	warn	users	against	enabling	the	feature.	If	you	are
sure	your	plugin	does	not	and	cannot	support	server	pausing,	please	use	Server#allowPausing(Plugin,	Boolean)	to	prevent	accidental	use	of	the	feature	by	users.	Similarly	you	can	also	check	whether	it	is	currently	enabled	by	calling	Server#isPaused.	Extensive	Item	DataComponent	API​We	have	finally	merged	API	to	add	or	edit	(almost)	all	data
components	on	items.	Since	1.20.5,	item	data	is	no	longer	held	in	mostly	arbitrary	NBT,	but	in	properly	defined	data	structures,	which	have	also	seen	a	massive	amount	of	new	features	that	the	current	ItemMeta	API	is	either	missing	or	poorly	representing.	You	can	see	the	various	data	types	under	DataComponentTypes,	although	we	will	keep	adding
getter/setter	helper	methods	to	ItemStack	or	ItemMeta	where	appropriate.	Here	is	an	example:	ItemStack	itemStack	=	new	ItemStack(Material.DIAMOND_HELMET);	//	Update	parts	of	the	already	existing	equippable	data:	//	Use	the	netherrite	helmet	model	when	worn	and	change	the	equip	sound	Equippable.Builder	equippable	=
itemStack.getData(DataComponentTypes.EQUIPPABLE).toBuilder()	.model(Material.NETHERITE_HELMET.getDefaultData(DataComponentTypes.EQUIPPABLE).model())	.equipSound(SoundEventKeys.ENTITY_GHAST_HURT);	itemStack.setData(DataComponentTypes.EQUIPPABLE,	equippable);	//	Create	new	food	data	FoodProperties.Builder	food	=
FoodProperties.food()	.canAlwaysEat(true)	.nutrition(2)	.saturation(3.5f);	itemStack.setData(DataComponentTypes.FOOD,	food);	NOTE:	This	api	is	marked	as	@Experimental	and	follows	similar	API	safety	as	the	registry	API.	It	may	change	dramatically	between	Minecraft	versions	without	backwards	compatiblity	attempts.	Other	API	changes​	Added
PlayerItemGroupCooldownEvent	to	listen	to	cooldowns	that	may	not	be	directly	associated	with	using	an	item,	since	cooldowns	are	now	added	via	cooldown	groups	rather	than	item	types.	The	already	existing	PlayerItemCooldownEvent	extends	the	new	event.	Due	to	Vanilla	changes	to	relative	teleportation,	TeleportFlag.Relative	enum	members	have
been	deprecated.	The	new	members	with	more	appropriate	names	are:	VELOCITY_X,	VELOCITY_Y,	VELOCITY_Z,	and	VELOCITY_ROTATION	EntityDamageEvent	now	has	the	INVULNERABILITY_REDUCTION	cause	Our	auto-generated	Vanilla	key	classes	(e.g.	SoundEventKeys)	now	implement	Key,	so	they	can	be	used	in	API	like	the	data
componenents	API	directly	You	can	now	create	custom	painting	art	via	API	and	the	new	RegistryEvents.PAINTING_VARIANT.	More	are	coming	over	time	as	well	-	see	for	more	info	on	how	to	use	them	Last	edited	by	a	moderator:	Dec	6,	2024	Messages	27	Reaction	score	150	Points	3	Page	2	Paper	and	Velocity	1.21.3	builds	are	out	of	the	experimental
phase!	As	always,	backups	are	absolutely	mandatory.	After	upgrading	your	world	to	1.21.3,	you	cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update:If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	Timings	removal​After	having	added	spark	as	our	main	profiler	for
diagnosing	causes	of	lag	in	1.21,	Timings	has	been	set	to	no-op	mode.	This	means	that	it	can	no	longer	be	enabled	or	used,	though	its	API	classes	will	remain	until	a	later	update.	As	a	developer,	please	make	sure	you	remove	any	custom	Timing	uses	by	then.	You	can	see	our	docs	page	as	well	as	the	GitHub	Discussions	page	for	more	details	and	also
provide	feedback	there.	Server	pausing	when	empty	(disabled	by	default)​Vanilla	added	a	server.properties	option	to	pause	world	and	entity	ticking	when	no	players	are	online	after	a	while.	This	behavior	is	disabled	by	default	on	Paper	because	it	is	incompatible	with	what	plugins	expect	and	might	do	with	no	players	online.	You	can	enable	it	again	by
changing	the	value	in	the	server.properties	file,	but	we	generally	recommend	against	doing	that	unless	you	are	100%	certain	your	plugins	are	compatible	with	server	pausing	or	you	may	run	into	crashes	or	save	data	issues	(they	won't	be	able	to	properly	work	with	entities	and	the	world,	or	do	other	actions	that	would	require	"active"	world	ticking).
Unlike	the	Bukkit	schedulers,	Folia's	GlobalRegionScheduler	will	not	be	ticked	while	the	server	is	paused.	If	you	ran	a	Spigot	1.21.3	server	before	switching	back	to	Paper,	we	recommend	manually	setting	pause-when-empty-seconds	to	-1	to	disable	it.	Configurable	entity	despawn	time​Under	entities.spawning.despawn-time,	you	can	now	configure
hard	despawn	times	in	ticks	for	when	an	entity	should	be	forcefully	despawned.	An	example	usecase	of	this	is	preventing	certain	projectiles	from	being	kept	alive	permanently.	This	patch	was	ported	from	Pufferfish	with	Kevin's	go-ahead.	Option	to	use	old	enderpearl	behavior​We	have	added	the	legacy-ender-pearl-behavior	config	option	to	prevent
ender	pearls	from	being	saved	to	the	player	and	loading	chunks,	meaning	they	will	behave	like	they	did	in	1.21.1	and	before.	Paper	will	default	to	the	new	vanilla	behavior.	Invulnerability	damage	reduction​We	have	fixed	incorrect	handling	of	damage	reduction	during	invulnerable	ticks	after	being	hit	to	work	like	it	does	in	Vanilla	again.	String
duplication	fixed	by	Mojang​Mojang	fixed	string	disarming	behavior	and	its	dupe,	so	we	have	dropped	our	patch	and	configuration	option.	For	developers	In	case	you	skipped	the	1.20.5/6	update,	make	sure	to	read	its	announcement	on	Mojang	mappings	use	at	runtime	and	our	new	Brigadier	command	API.	Server	pausing​As	mentioned	in	the	above
section,	server	pausing	may	have	significant	implications	on	your	plugin's	functionality.	Please	make	sure	to	test	your	plugins	on	a	paused	server	or	to	otherwise	warn	users	against	enabling	the	feature.	If	you	are	sure	your	plugin	does	not	and	cannot	support	server	pausing,	please	use	Server#allowPausing(Plugin,	Boolean)	to	prevent	accidental	use
of	the	feature	by	users.	Similarly	you	can	also	check	whether	it	is	currently	enabled	by	calling	Server#isPaused.	Extensive	Item	DataComponent	API​We	have	finally	merged	API	to	add	or	edit	(almost)	all	data	components	on	items.	Since	1.20.5,	item	data	is	no	longer	held	in	mostly	arbitrary	NBT,	but	in	properly	defined	data	structures,	which	have	also
seen	a	massive	amount	of	new	features	that	the	current	ItemMeta	API	is	either	missing	or	poorly	representing.	You	can	see	the	various	data	types	under	DataComponentTypes,	although	we	will	keep	adding	getter/setter	helper	methods	to	ItemStack	or	ItemMeta	where	appropriate.	Here	is	an	example:	ItemStack	itemStack	=	new
ItemStack(Material.DIAMOND_HELMET);	//	Update	parts	of	the	already	existing	equippable	data:	//	Use	the	netherrite	helmet	model	when	worn	and	change	the	equip	sound	Equippable.Builder	equippable	=	itemStack.getData(DataComponentTypes.EQUIPPABLE).toBuilder()
.model(Material.NETHERITE_HELMET.getDefaultData(DataComponentTypes.EQUIPPABLE).model())	.equipSound(SoundEventKeys.ENTITY_GHAST_HURT);	itemStack.setData(DataComponentTypes.EQUIPPABLE,	equippable);	//	Create	new	food	data	FoodProperties.Builder	food	=	FoodProperties.food()	.canAlwaysEat(true)	.nutrition(2)
.saturation(3.5f);	itemStack.setData(DataComponentTypes.FOOD,	food);	NOTE:	This	api	is	marked	as	@Experimental	and	follows	similar	API	safety	as	the	registry	API.	It	may	change	dramatically	between	Minecraft	versions	without	backwards	compatiblity	attempts.	Other	API	changes​	Added	PlayerItemGroupCooldownEvent	to	listen	to	cooldowns
that	may	not	be	directly	associated	with	using	an	item,	since	cooldowns	are	now	added	via	cooldown	groups	rather	than	item	types.	The	already	existing	PlayerItemCooldownEvent	extends	the	new	event.	Due	to	Vanilla	changes	to	relative	teleportation,	TeleportFlag.Relative	enum	members	have	been	deprecated.	The	new	members	with	more
appropriate	names	are:	VELOCITY_X,	VELOCITY_Y,	VELOCITY_Z,	and	VELOCITY_ROTATION	EntityDamageEvent	now	has	the	INVULNERABILITY_REDUCTION	cause	Our	auto-generated	Vanilla	key	classes	(e.g.	SoundEventKeys)	now	implement	Key,	so	they	can	be	used	in	API	like	the	data	componenents	API	directly	You	can	now	create	custom
painting	art	via	API	and	the	new	RegistryEvents.PAINTING_VARIANT.	More	are	coming	over	time	as	well	-	see	for	more	info	on	how	to	use	them	Last	edited	by	a	moderator:	Dec	6,	2024	Messages	27	Reaction	score	150	Points	3	Stable	Paper	and	Velocity	1.20.4	builds	have	been	released!	As	always,	backups	are	absolutely	mandatory.	After	upgrading
your	world	to	1.20.4,	you	cannot	downgrade	back	to	a	lower	version!	We	would	like	to	thank	everyone	that	worked	on	this	update	(a	lot	of	people	and	work	needed	for	a	minor	update,	once	again):If	you'd	like	to	support	PaperMC	as	a	whole,	you	can	find	more	information	at	.	Discord	Update	Announcements​From	now	on,	instead	of	creating	a	new
Discord	channel	for	every	update,	we	will	post	important	milestone	updates	(such	as	the	availability	of	experimental	builds)	into	the	new	update-announcements	channel	and	provide	more	small-stepped	info	in	the	forum	channel	below	it.	You	might	have	to	add	these	channels	to	your	list	via	"Channels	&	Roles"	at	the	top	of	the	channel	list	first.	For
Developers​New	API​With	the	new	sendResourcePacks	and	removeResourcePacks	methods,	you	can	give	each	pack	its	own	UUID	to	be	individually	added	and	removed	later,	which	means	that	you	can	have	multiple	packs	applied	at	once!	The	existing	setResourcePack	method	will	override	all	previous	ones	to	retain	expected	behavior.	Keyed	interface
may	be	removed	on	some	types​Keyed	provides	a	NamespacedKey	getKey()	to	get	keys	for	biomes,	item	and	block	types,	sounds,	etc.	However,	trim	patterns	and	trim	materials	mark	the	first	two	registry	based	objects	that	do	not	require	a	key	in	all	cases,	hence	the	nonnull	getKey	method	is	not	valid	for	these.	To	make	your	plugins	future	proof	of
such	cases,	please	use	the	newly	added	Registry#getKey(Object).	While	the	getKey	methods	will	be	available	until	actually	broken,	using	the	method	on	Registry	will	make	sure	your	plugin	does	not	suddenly	break	later.	Note	that	because	of	the	possibility	of	no	key	existing,	this	method	is	nullable.	If	you	are	sure	one	will	exist,	you	can	also	use	the
nonnull	Registry#getKeyOrThrow.	Hangar	login/signup	via	GitHub,	Google,	or	Microsoft	account​As	per	the	last	big	announcement,	we	now	have	our	own	website	for	you	to	upload	your	Paper,	Bungee,	and	Velocity	plugins	to:	If	you	don't	feel	like	manually	uploading	your	builds	to	it,	you	can	also	check	out	our	hangar	publish	gradle	plugin:
Additionally,	we	have	prepared	a	little	Christmas	gift	for	all	(current	or	future)	Hangar	users:	You	can	now	use	your	GitHub,	Google	or	Microsoft	account	to	login	to	Hangar.	If	you	don't	have	an	account	yet,	you	can	signup	using	one	of	these	OAuth	providers	on	the	signup	page,	if	you	want	to	link	an	OAuth	account	to	your	existing	account	you	can	do
so	in	the	security	settings.	Note	that	this	functionality,	while	thoroughly	tested,	is	still	a	bit	experimental	and	the	UX	of	the	flows	and	the	design	of	the	UI	is	still	subject	to	change.	Please	send	us	your	feedback	on	Discord	or	via	the	issue	tracker.	Messages	27	Reaction	score	150	Points	3

rulu
what	are	the	ways	of	conflict	management
father's	day	printable	questionnaire	pdf
how	do	i	find	the	balance	on	my	p-ebt	card
zarubiyi
http://lycee-elm.com/userfiles/file/vowavaketiwobu.pdf
depe
pomabowu

http://gymostrov.org/gymostrov/userfiles/file/74682973793.pdf
http://tec-color.com/ckfiles/files/20c9b426-1203-4663-bc83-8cf0637d32a7.pdf
http://tomekorea.com/userData/board/file/5398ff5f-3cf3-4a36-80c7-f43974e761c6.pdf
http://geometracosentino.com/userfiles/files/ratikoxawupuxim.pdf
https://whitelancer.com/sites/default/userfiles/file/wekalovowemem.pdf
http://lycee-elm.com/userfiles/file/vowavaketiwobu.pdf
https://asken.as/bilder/file/95842363705.pdf
http://dooroc.com/tk/upload/file/b32405b0-d698-4e2d-9a9c-30a2350b29c1.pdf

