
	

https://kalatuwiduba.tugoduzak.com/710797154461990872638980843873916174986359?disedasipevupatevaduwomosojunosebabukasifuzexugokikinejomesuwerolomegaxusawapusexetabo=sosavamuxupupedopejowurowevosutusigapejabodatamagitesetinaberewonububebiketemewamejapokemejelilozawadojoxorasebavelogufobagofosudukopumixewavimivusitoraxatazozozogoremafebexukapukefiserusuwufavuzuvopunizajev&utm_kwd=how+to+run+chmod+755&pawuwuvipuvawukavipivomalusewaxebuperikibobikigatifexap=lesubarumubunexodezinapupimufutujemowuzudarepajexufizakifawomazefilavototijomivanibunezokipewubimejaxotanimefavosagarexemekupidoxedagurixewabolopoxep

Get	a	curated	assortment	of	Linux	tips,	tutorials	and	memes	directly	in	your	inbox.	Over	18,000	Linux	users	enjoy	it	twice	a	month.	Get	a	curated	assortment	of	Linux	tips,	tutorials	and	memes	directly	in	your	inbox.	Over	18,000	Linux	users	enjoy	it	twice	a	month.	4.4K	As	someone	who	loves	tinkering	with	system	settings,	one	command	that	I	find
particularly	essential	is	chmod.	This	command	is	a	fundamental	part	of	managing	file	permissions	in	Linux,	and	it’s	a	tool	every	Linux	user	should	master.	Understanding	chmod	can	greatly	enhance	your	control	over	your	files	and	directories,	and	in	this	article,	my	goal	is	to	explain	about	the	effective	usage	of	this	command	using	examples.
Introduction	to	file	permissions	Linux,	like	other	Unix-based	systems,	uses	a	permission	system	to	control	who	can	read,	write,	or	execute	a	file.	Each	file	and	directory	has	a	set	of	permissions	divided	into	three	categories:	owner,	group,	and	others.	These	permissions	are	represented	as	a	series	of	letters	when	you	list	files	using	ls	-l:	-rwxr-xr--	Here’s
what	each	part	means:	-:	File	type	(e.g.,	-	for	regular	files,	d	for	directories)	rwx:	Permissions	for	the	file	owner	r-x:	Permissions	for	the	group	r--:	Permissions	for	others	Basics	of	chmod	The	chmod	command	allows	you	to	change	these	permissions.	The	syntax	is	straightforward:	chmod	[options]	mode	file	Symbolic	mode	One	way	to	specify
permissions	with	chmod	is	using	symbolic	mode.	In	symbolic	mode,	you	use	letters	to	represent	who	you’re	changing	permissions	for	and	what	permissions	you’re	changing.	Here’s	a	breakdown:	u:	User	(owner)	g:	Group	o:	Others	a:	All	(user,	group,	and	others)	You	can	add	(+),	remove	(-),	or	set	(=)	permissions.	Examples:	Adding	execute	permission
for	the	user:	chmod	u+x	filename	If	you	have	a	script	that	you	want	to	make	executable	by	the	owner,	you’d	run	this	command.	The	+x	part	means	“add	execute	permission.”	Removing	write	permission	for	the	group:	chmod	g-w	filename	This	command	removes	the	write	permission	from	the	group.	Useful	if	you	want	to	prevent	group	members	from
modifying	a	file.	Setting	read	and	write	permission	for	others:	chmod	o=rw	filename	This	sets	the	permissions	for	others	to	read	and	write	but	not	execute.	Numeric	mode	Another	way	to	set	permissions	is	using	numeric	mode.	Numeric	mode	is	a	bit	more	efficient	once	you	get	the	hang	of	it.	Permissions	are	represented	by	a	three-digit	octal	number,
with	each	digit	representing	different	permissions.	4:	Read	(r)	2:	Write	(w)	1:	Execute	(x)	0:	No	permission	(–)	These	numbers	are	combined	to	form	the	permission	set.	For	instance,	7	(4+2+1)	means	read,	write,	and	execute.	Examples:	Setting	full	permissions	for	the	owner	and	read-only	for	others:	chmod	744	filename	This	command	sets	the
permissions	to	rwxr--r--.	Setting	read	and	execute	permissions	for	everyone:	chmod	755	filename	This	sets	the	permissions	to	rwxr-xr-x.	Setting	read	and	write	permissions	for	the	owner	and	the	group,	and	read-only	for	others:	chmod	664	filename	This	sets	the	permissions	to	rw-rw-r--.	Recursive	changes	with	chmod	If	you	want	to	change	the
permissions	of	a	directory	and	all	its	contents,	you	can	use	the	-R	(recursive)	option.	This	is	particularly	handy	when	you’re	setting	up	a	new	project	and	need	to	apply	the	same	permissions	to	a	bunch	of	files	and	subdirectories.	Example:	chmod	-R	755	/path/to/directory	Practical	examples	explaining	chmod	command	usage	Let’s	say	you	have	a
directory	called	my_project	with	a	script	inside	it	called	run.sh.	You	want	to	ensure	that	you	have	full	control	over	the	directory	and	its	contents,	the	group	can	read	and	execute	files,	and	others	can	only	read	them.	List	the	current	permissions:	ls	-l	my_project	Output	might	look	like	this:	drwxr-xr-x	2	user	user	4096	Aug	7	12:34	my_project	-rw-r--r--	1
user	user	45	Aug	7	12:34	run.sh	Make	run.sh	executable:	chmod	u+x	my_project/run.sh	Check	the	permissions	again:	ls	-l	my_project	Output:	-rwxr--r--	1	user	user	45	Aug	7	12:34	run.sh	Set	appropriate	permissions	for	the	entire	directory:	chmod	-R	755	my_project	This	command	ensures	that	you	can	execute	files	in	the	directory	and	subdirectories,
while	the	group	and	others	have	read	and	execute	permissions.	Takeaways	Personally,	I	find	chmod	to	be	an	indispensable	tool.	It	provides	a	granular	level	of	control	over	file	permissions,	which	is	crucial	for	maintaining	system	security	and	functionality.	However,	one	must	use	it	with	caution.	Incorrect	permissions	can	either	lock	you	out	of	your	files
or	expose	sensitive	information	to	unauthorized	users.	I	dislike	when	permissions	are	misconfigured,	as	it	often	leads	to	frustrating	troubleshooting	sessions.	In	conclusion,	learning	chmod	is	a	vital	skill	for	any	Linux	user.	With	practice,	you’ll	find	it	becomes	second	nature.	Hey	friend!	Learning	about	permissions	in	Linux	is	a	key	step	in	your	journey
as	an	admin	or	developer.	Let‘s	unravel	the	mystery	around	those	cryptic	rwx	codes	and	dive	into	what	chmod	755	really	means.	Stick	with	me	and	you‘ll	be	a	permissions	pro	in	no	time!	Permissions	in	Linux:	A	Quick	Tour	Before	we	get	to	chmod	755	specifically,	let‘s	understand	what	file	permissions	are	in	Linux.	On	a	multi-user	*nix	system	like
Linux,	we	need	a	way	to	control	who	can	access	and	modify	files	and	directories.	That‘s	what	permissions	provide!	There	are	three	basic	types	of	permissions:	Read	(r)	View	or	copy	contents	of	a	file	List	files	in	a	directory	Write	(w)	Modify	or	delete	a	file	Create,	rename,	delete	files	in	a	directory	Execute	(x)	Run	a	executable	file/script	Change	into	a
directory	Now	here‘s	the	cool	part.	Permissions	are	assigned	separately	to	three	classes	of	users:	User	(u)	The	owner	of	the	file	or	directory	Group	(g)	Other	users	in	the	same	group	as	the	owner	Others	(o)	All	other	users	on	the	system	So	each	file/directory	has	3	sets	of	rwx	permissions	that	apply	to	different	users.	When	you	run	ls	-l,	it	shows	the
permissions	like:	-rwxr-xr-x	Let‘s	break	this	down:	–	File	type	(d	for	directory)	rwx	Owner	permissions	r-x	Group	permissions	r-x	Other	users	permissions	This	is	the	symbolic	notation	for	permissions.	But	there‘s	also	a	numeric	notation	we	can	use.	Each	rwx	permission	is	assigned	a	number:	So	rwx	=	4	+	2	+	1	=	7	Our	example	would	be	755	in
numeric	notation.	Pretty	slick!	Now	that	you‘ve	got	the	basics	down,	let‘s	move	on	to	what	exactly	chmod	755	means.	Understanding	chmod	755	Permissions	The	chmod	755	permission	set	is	commonly	used	for	directories	and	executable	files	in	Linux.	You‘ll	often	see	it	applied	to	stuff	like:	/usr/bin	/usr/local/bin	User	home	directories	Scripts	But	what
does	755	actually	represent?	Let‘s	break	it	down.	7	rwx	(read,	write,	execute	for	owner)	5	r-x	(read,	execute	for	group)	5	r-x	(read,	execute	for	others)	So	the	owner	has	full	control.	But	group	and	others	only	get	read	and	execute	access.	This	prevents	group/others	from	modifying	contents	in	these	locations.	The	755	permission	set	provides	a	balanced
level	of	access	for	shared	directories	and	executable	programs.	Let‘s	look	at	some	common	examples	of	where	you‘ll	see	this	in	the	wild.	User	home	directories	Your	home	folder	like	/home/john	will	be	755.	You	have	full	access	to	your	stuff,	but	others	can	only	view	and	navigate	–	not	modify.	Program	directories	Locations	like	/usr/bin	contain	755
binary	programs	that	every	user	can	run	but	not	edit.	System	config	files	Configs	in	/etc	are	755	so	only	root	can	change	them	but	everyone	can	view.	Shared	data	Shared	drives	or	data	folders	are	often	755	to	allow	access	but	prevent	tampering.	Now	that	you	know	where	755	shows	up,	let‘s	look	at	how	to	apply	it…	Setting	the	755	Permission	with
Chmod	The	chmod	command	is	used	to	change	permissions	of	files	and	directories.	To	set	755	permissions,	you‘d	run:	chmod	755	/home/john/file.txt	Let‘s	try	a	simple	example:	$	ls	-l	file.txt	-rw-r--r--	1	john	staff	0	Feb	27	15:23	file.txt	$	chmod	755	file.txt	$	ls	-l	file.txt	-rwxr-xr-x	1	john	staff	0	Feb	27	15:23	file.txt	Now	the	owner	has	rwx	while
group/others	have	r-x.	Perfect!	To	recursively	apply	755	to	all	files/dirs	under	a	directory:	chmod	-R	755	directory	Some	handy	chmod	options:	-v	Verbose	output	-c	List	changed	files	-R	Recurse	directories	Here	are	a	few	more	examples:	#	Single	file	chmod	755	script.sh	#	Multiple	files	chmod	755	file1	file2	file3	#	Directory	recursively	chmod	-R	755
my_code/	#	Verbose	output	chmod	-v	755	file.txt	Now	that	you	can	set	the	755	permission,	let‘s	verify	it	worked…	Checking	File	Permissions	in	Linux	After	running	chmod,	it‘s	good	practice	to	validate	the	permissions	are	set	correctly.	The	ls	-l	command	displays	the	standard	permissions	for	all	files/folders.	Let‘s	check	the	permission	on	a	file	we
changed	to	755:	$	ls	-l	script.sh	-rwxr-xr-x	1	john	staff	875	Feb	28	15:23	script.sh	The	first	10	characters	show	the	permissions:	First	character:	file/directory	flag	Next	3	characters:	owner	permissions	Middle	3	characters:	group	permissions	Last	3	characters:	other	users	permissions	We	can	see	the	owner	has	rwx	while	group	and	others	just	have	r-x.
Great	success!	Here	are	a	some	more	permission	examples:	-rw-r--r--	#	File:	644	drwxrwsr-x	#	Directory:	775	-rw-------	#	Private	File:	600	-rwx--x--x	#	Executable	script:	711	Take	some	time	to	practice	identifying	file	permissions	from	the	ls	output.	This	is	an	important	Linux	skill	to	master!	Now	that	you	know	how	to	set	and	verify	755	permissions,
let‘s	talk	about	what	happens	by	default	when	you	create	new	files	or	directories…	Default	Permissions:	Understanding	Umask	Whenever	a	new	file	or	directory	is	created	in	Linux,	it‘s	given	a	default	permission	set:	File:	0666	Directory:	0777	This	allows	full	read/write/execute	access	for	user,	group	and	others.	But	that‘s	usually	not	what	we	want	for
security	reasons!	Here‘s	where	umask	comes	in…	Umask	is	a	value	that	masks	out	certain	permissions	whenever	a	file	is	created.	The	common	umask	value	is	002.	What	does	this	do?	Value	of	002	Masks	write	for	group/others	Leaves	read	and	execute	So	with	umask	002,	new	files	get	default	permissions	of	644	instead	of	666.	And	new	directories	get
755	rather	than	777.	Much	better	for	security!	Each	Linux	distribution	comes	with	a	default	umask	set	in	/etc/login.defs	Understanding	how	umask	works	allows	you	properly	configure	your	system	defaults.	Now	that	you‘ve	got	permissions	and	umask	down,	let‘s	look	at	some	real-world	examples…	Setting	File	Permissions	for	Security	Choosing	the
right	permissions	is	crucial	for	security	and	usability.	For	example:	System	config	files	should	be	644	to	prevent	modification	by	regular	users	User	data	might	use	700	permissions	to	restrict	access	only	to	the	owner	Web	content	is	often	755	so	the	public	can	read	but	not	write	Scripts	could	be	700	or	755	depending	on	whether	others	need	access
Some	key	principles	to	follow:	Use	the	minimum	required	permissions	Start	restrictive,	open	up	as	needed	Remove	write	access	unless	absolutely	required	Here	are	some	common	permission	guidelines:	System	config	files	(/etc)	644	Log	files	(/var/log)	640	(allow	read	for	admin	group)	User	home	directories	700	or	755	Web	content	755	Scripts	700	or
755	Setting	intentional	permissions	according	to	these	kinds	of	best	practices	will	keep	your	system	secure.	Now	what	if	you	mess	up	your	permissions?	Let‘s	talk	troubleshooting…	Troubleshooting	Permission	Issues	We‘ve	all	accidentally	changed	permissions	incorrectly	and	caused	issues	accessing	files.	Here	are	some	tips	for	troubleshooting	and
correcting	permissions	problems:	Identifying	Issues	Use	ls	-l	to	inspect	permissions	Try	accessing	file	as	various	users	to	pinpoint	problem	Error	messages	often	indicate	permission	problem	Resetting	Permissions	Log	in	as	root	or	file	owner	to	issue	chmod	Find	parent	directory	with	correct	permissions	and	mirror	settings	Recursively	reset
permissions	on	directories	using	755	or	775	Restoring	Lost	Access	Boot	into	recovery	mode	to	gain	root	access	if	needed	Reset	forgotten	password	to	regain	access	to	admin	user	Take	ownership	with	chown	if	you	have	root	privileges	Preventing	Future	Problems	Set	umask	to	sane	default	in	/etc/login.defs	Use	ACLs	where	finer	grained	control	is
needed	Check	for	abnormal	permissions	with	find	or	file	commands	Script	auditing	of	permissions	weekly/monthly	Mastering	permissions	helps	avoid	many	common	issues	both	in	development	and	production	environments.	Know	how	to	diagnose	and	recover	from	problems!	Flexing	Your	Linux	Permissions	Power	We‘ve	covered	a	ton	of	ground	here!
Let‘s	recap	the	key	points:	Permissions	control	access	to	files	and	directories	There	are	3	types:	read,	write,	execute	And	3	classes:	owner,	group,	others	chmod	755	gives	full	access	to	owner,	read/execute	for	the	rest	Use	chmod	to	modify	permissions	ls	-l	allows	verifying	permissions	are	set	Umask	influences	default	permission	on	new	files/dirs	Set
permissions	intentionally	for	security	and	access	needs	Understanding	permissions	is	crucial	for	both	Linux	admins	and	developers.	I	hope	this	guide	has	demystified	chmod	755	and	how	Linux	permissions	work	in	general!	Let	me	know	if	you	have	any	other	questions.	And	good	luck	on	your	journey	to	becoming	a	Linux	permissions	pro!	Use	the	octal
CHMOD	Command:	chmod	-R	755	folder_name	OR	use	the	symbolic	CHMOD	Command:	chmod	-R	a+rwx,g-w,o-w	folder_name	The	chmod	command	modifies	the	permissions	of	a	file	or	directory	on	a	Linux	system.	The	three	numbers	after	the	chmod	command	represent	the	permissions	assigned	to	user	owner,	group	owner	and	others.	The	numbers
755	assign	read-write-execute	permissions	to	the	user	ower	and	read-execute	permissions	to	group	owner	and	others.	In	this	article	I	will	explain	the	basics	of	the	chmod	command	and	you	will	learn	how	to	use	it.	It’s	probably	one	of	the	most	important	Linux	commands.	We	will	also	go	through	an	example	of	the	Linux	command	chmod	755.	First	of
all,	let’s	start	from	the	fact	that	Linux	is	a	multi-user	system…	…that’s	why	setting	permissions	of	files	and	directories	is	a	must	know	if	you	work	with	Linux.	There	are	different	types	of	permissions	for	users	and	groups:	read	permissions	write	permissions	execute	permissions	And,	how	can	they	be	set?	The	chmod	command	is	used	in	Linux	(and
Unix-like	systems)	to	set	the	permissions	of	files	and	directories.	First	of	all,	here	is	the	generic	syntax	of	the	chmod	command:	chmod	The	permission	part	of	the	command	can	have	different	formats.	One	format	is	a	group	of	number	like	the	one	you	see	below:	chmod	755	So,	we	have	assigned	755	to	the	permissions	part	of	the	command.	But,	what
does	it	mean?	To	understand	that	let’s	use	the	ls	command	in	the	current	directory	to	look	at	the	details	that	Linux	provides	about	a	file	and	a	directory:	[myuser@localhost	~]$	ls	-al	total	2592	drwxrwxr-x	5	myuser	mygroup	4096	Nov	10	16:05	.	drwx------	6	myuser	mygroup	225	Mar	10	23:50	..	-rwxrwxr-x	1	myuser	mygroup	39	Oct	26	13:13
test_script.sh	drwxrwxr-x	6	myuser	mygroup	98	Nov	8	18:09	data	I	have	highlighted	in	bold	the	file	and	the	directory	we	are	looking	at.	Which	one	is	the	file	and	which	one	is	the	directory?	The	left	hand	part	of	the	line	starts	with	a	d	for	a	directory	and	with	a	dash	(–)	for	a	file.	The	fragment	of	the	lines	I	have	highlighted	shows	the	user	owner	and
group	owner,	in	this	specific	case	the	user	owner	is	myuser	and	the	group	owner	is	mygroup.	The	user	owner	is	the	user	who	has	created	the	file	or	the	directory.	The	group	owner	defines	the	group	that	has	access	to	the	file	or	directory.	The	idea	of	a	group	is	that	multiple	users	can	belong	to	it	and	hence	have	the	same	level	of	access.	For	instance,
an	example	of	group	in	a	company	could	be	the	marketing	team	whose	members	should	have	the	same	level	of	access	to	files	and	directories.	This	access	is	defined	by	a	set	of	permissions.	The	same	permissions	that	as	mentioned	before	can	be	set	with	the	chmod	command.	So,	let’s	look	again	at	the	output	of	the	ls	command:	[myuser@localhost	~]$
ls	-al	total	2592	drwxrwxr-x	5	myuser	mygroup	4096	Nov	10	16:05	.	drwx------	6	myuser	mygroup	225	Mar	10	23:50	..	-rwxrwxr-x	1	myuser	mygroup	39	Oct	26	13:13	test_script.sh	drwxrwxr-x	6	myuser	mygroup	98	Nov	8	18:09	data	This	time	we	focus	on	the	first	part	of	the	output,	the	permissions	assigned	to	the	file	and	the	directory.	Here	is	how	you
can	break	down	the	permissions:	Character	1:	as	we	said	before	it	indicates	if	this	is	a	file	(–)	or	a	directory	(d).	2-4:	permissions	for	the	user	owner	(in	this	case	rwx)	5-7:	permissions	for	the	group	owner	(in	this	case	rwx)	8-10:	permissions	for	others	(any	user	who	is	not	the	user	owner	or	is	not	part	of	the	group	owner	–	in	this	case	r-x)	It’s	time	to
cover	the	basic	values	for	permissions	(characters	between	2-10):	r:	read	permission	w:	write	permission	x:	execute	permission	The	dash	(–)	shows	permissions	that	are	not	set	(e.g.	r-x	indicates	that	the	read	and	execute	permissions	are	set	but	the	write	permission	is	not	set).	So,	if	we	go	back	to	our	file:	-rwxrwxr-x	1	myuser	mygroup	39	Oct	26	13:13
test_script.sh	The	user	owner	has	read-write-execute	permissions,	the	group	owner	has	read-write-execute	permissions	and	others	have	read-execute	permissions	(the	write	permission	is	not	set).	And	the	same	applies	to	the	directory:	drwxrwxr-x	6	myuser	mygroup	98	Nov	8	18:09	data	So,	always	remember	to	read	permissions	as	groups	of	three
letters	that	always	follow	the	same	logical	order:	r	(read),	w	(write)	and	x	(execute).	So,	how	is	this	related	to	the	initial	question?	What	does	the	command	chmod	755	mean?	The	permissions	we	have	seen	expressed	using	the	letters	r,	w,	x	can	also	be	expressed	with	an	octal	representation	(using	the	numbers	0	through	7).	And	that’s	exactly	what
755	is,	the	octal	representation	of	a	set	of	permissions	for	user	owner,	group	owner	and	others.	The	octal	number	comes	from	the	sum	of	the	following	numbers:	4	for	the	read	permission	2	for	the	write	permission	1	for	the	execute	permission	Where	permissions	for	user	owner,	group	owner	and	others	are	considered	separately.	In	other	words	the
sum	of	the	permissions	for	the	user	owner	will	produce	one	octal	number	(from	0	to	7)	and	the	same	applies	for	the	permissions	for	the	group	owner	and	for	others.	That’s	why	we	end	up	with	3	octal	numbers	(there	could	be	a	fourth	number	before	them	but	it’s	out	of	scope	for	this	tutorial).	Going	back	to	755,	here	is	what	it	means:	7:	4	+	2	+	1	=
read	+	write	+	execute	permissions	5:	4	+	1	=	read	+	execute	permissions	5:	4	+	1	=	read	+	execute	permissions	Does	it	make	sense?	How	would	you	translate	the	permissions	644	instead?	Also	remember	to	stay	away	from	the	permissions	777	that	gives	full	access	to	everyone.	Using	the	chmod	777	command	on	files	or	directories	is	not	a
recommended	practice	for	obvious	security	reasons.	Now	that	we	know	what	755	means,	let’s	have	a	look	at	the	effect	of	this	set	of	permissions	on	a	file	and	on	a	directory.	We	want	to	understand	what	read,	write	and	execute	permissions	do	from	a	user	perspective	when	applied	to	files	or	directories.	Read	permission:	file:	read	the	content	of	the	file
directory:	list	the	content	of	the	directory	Write	permission:	file:	modify	the	content	of	the	file	directory:	add,	rename	and	delete	files	in	the	directory	(assuming	that	the	execute	permission	is	set	on	the	directory)	Execute	permission:	file:	define	an	executable	file	(e.g.	a	Bash	script)	directory:	access	the	directory	So,	you	now	know	what	the	command
chmod	755	means	applied	to	files	and	directories.	To	get	full	understanding	of	it	try	to	create	a	file	and	a	directory	and	experiment	with	different	permissions.	See	any	errors	returned	by	the	Linux	shell	when	you	execute	an	operation	not	allowed	on	a	file	or	directory	based	on	the	permissions	you	assigned	to	it.	In	all	our	examples	so	far	we	have	only
used	the	chmod	755	command	followed	by	the	set	of	permissions	and	by	the	file	or	directory	we	apply	those	permissions	too.	Sometimes	you	might	want	to	assign	the	same	permissions	to	a	directory	and	to	all	the	files	and	subdirectories	under	it.	How	can	you	do	it?	The	chmod	command	provides	a	flag	that	allows	to	apply	the	change	in	permissions
recursively	to	anything	under	the	directory	you	apply	the	command	to.	Let’s	see	an	example…	…I	have	created	a	directory	called	test_dir:	drwxr-xr-x	5	myuser	mygroup	160	Jul	23	23:56	test_dir	As	you	can	see	the	permissions	for	the	directory	are	rwx	(7),	r-x	(5)	and	r-x	(5).	Then	inside	this	directory	I	have	created	two	subdirectories	(test_dir1	and
test_dir2)	and	one	file	(testfile).	[myuser@localhost	~]$	ls	-al	test_dir/	total	0	drwxr-xr-x	5	myuser	mygroup	160	Jul	23	23:56	.	drwxr-xr-x	3	myuser	mygroup	96	Jul	23	23:56	..	drwxr-xr-x	2	myuser	mygroup	64	Jul	23	23:56	test_dir1	drwxr-xr-x	2	myuser	mygroup	64	Jul	23	23:56	test_dir2	-rw-r--r--	1	myuser	mygroup	0	Jul	23	23:56	testfile	If	I	want	to
make	sure	everything	inside	the	test_dir	directory	has	permissions	set	to	755,	I	can	use	the	chmod	command	with	the	-R	flag:	chmod	-R	755	test_dir	And	here	is	the	content	of	the	directory	after	running	the	command:	[myuser@localhost	~]$	ls	-al	test_dir/	total	0	drwxr-xr-x	5	myuser	mygroup	160	Jul	23	23:56	.	drwxr-xr-x	3	myuser	mygroup	96	Jul	23
23:56	..	drwxr-xr-x	2	myuser	mygroup	64	Jul	23	23:56	test_dir1	drwxr-xr-x	2	myuser	mygroup	64	Jul	23	23:56	test_dir2	-rwxr-xr-x	1	myuser	mygroup	0	Jul	23	23:56	testfile	As	you	can	see	the	permission	of	the	file	testfile	have	been	updated	from	rw-r–r–	(644)	to	rwxr-xr-x	(755).	Makes	sense?	We	have	covered	quite	a	lot	of	concepts	in	this	article.	Now
you	should	know:	The	purpose	of	the	chmod	command.	What	is	the	number	755	applied	to	chmod.	Which	command	gives	user	and	group	owner	certain	permissions.	How	to	map	read,	write	and	execute	permissions	with	their	octal	representation.	The	meaning	of	chmod	755	applied	to	files	and	directories.	Do	you	have	any	questions?		Claudio	Sabato	is
an	IT	expert	with	over	15	years	of	professional	experience	in	Python	programming,	Linux	Systems	Administration,	Bash	programming,	and	IT	Systems	Design.	He	is	a	professional	certified	by	the	Linux	Professional	Institute.	With	a	Master’s	degree	in	Computer	Science,	he	has	a	strong	foundation	in	Software	Engineering	and	a	passion	for	helping
others	become	Software	Engineers.	Just	select	the	permissions	that	you	want	for	your	files	and	hit	the	Calculate	button.	The	permissions	are	displayed	under	the	calculate	button.	Linux	File	Permission	is	in	absolute	mode	and	in	symbolic	mode.	Once	you	have	the	file	permissions	in	absolute	or	symbolic	mode,	you	can	use	the	chmod	command	to
change	the	file	permission.	Refer	to	these	chmod	command	examples	if	you	are	not	familiar	with	this	command.Chmod	ExplanationSome	details	about	the	user,	group	and	other	you	may	need	to	know	to	clear	your	basics.User/OwnerUser	is	the	owner	of	the	file.	When	you	create	a	file,	you	become	the	owner	of	the	file.	The	ownership	can	be
changed.GroupEvery	user	is	part	of	a	certain	group(s).	A	group	consists	of	several	users	and	this	is	one	way	to	manage	users	in	a	multi-user	environment.OtherOther	can	be	considered	as	a	super	group	with	all	the	users	on	the	system.	Basically,	anyone	with	access	to	the	system	belongs	to	this	group.I	hope	this	nifty	chmod	calculator	helped	you	to
calculate	the	Linux	file	permissions	easily.Common	chmod	commands	and	their	meaningHere	are	some	command	chmod	commands	with	their	explanation:chmod	777This	means	that	owner,	group	and	everyone	has	all	the	rights,	i.e.	to	read,	write	and	execute.	This	is	a	dangerous	permission	to	have	on	any	file	and	you	should	avoid	using	it.chmod
755The	owner	can	read,	write	and	execute.	Group	members	and	everyone	else	can	read	and	execute	but	cannot	modify	(write)	the	file.chmod	+xWith	this	command,	you	are	adding	execute	permission	for	the	owner,	group	and	everyone	else.	This	is	equivalent	to	chmod	a+x.chmod	600With	this,	you	are	giving	read	and	write	permission	to	the	owner
user.	Group	members	and	others	cannot	read,	write	or	execute.	Even	the	owner	cannot	execute	the	file	with	this	permission	set.chmod	700You	are	giving	read,	write	and	execute	permission	to	the	owner	user	but	the	groups	members	and	others	have	no	permissions	at	all.	They	cannot	read,	write	or	execute.chmod	400The	file	can	only	be	read	by	the
owner.	No	one	can	write	or	execute	it.chmod	775The	user	and	groups	can	read,	write	and	execute	the	file.	Others	can	read	and	execute	but	cannot	write.chmod	644The	owner	can	read	and	write	but	cannot	execute	it.	Group	members	and	others	can	read	the	file	but	cannot	write	or	execute	it.	Get	a	curated	assortment	of	Linux	tips,	tutorials	and
memes	directly	in	your	inbox.	Over	18,000	Linux	users	enjoy	it	twice	a	month.	Control	who	can	access	files,	search	directories,	and	run	scripts	using	the	Linux's	chmod	command.	This	command	modifies	Linux	file	permissions,	which	look	complicated	at	first	glance	but	are	actually	pretty	simple	once	you	know	how	they	work.	chmod	Modifies	File
Permissions	In	Linux,	who	can	do	what	to	a	file	or	directory	is	controlled	through	sets	of	permissions.	There	are	three	sets	of	permissions.	One	set	for	the	owner	of	the	file,	another	set	for	the	members	of	the	file's	group,	and	a	final	set	for	everyone	else.	The	permissions	control	the	actions	that	can	be	performed	on	the	file	or	directory.	They	either
permit,	or	prevent,	a	file	from	being	read,	modified	or,	if	it	is	a	script	or	program,	executed.	For	a	directory,	the	permissions	govern	who	can	cd	into	the	directory	and	who	can	create,	or	modify	files	within	the	directory.	You	use	the	chmod	command	to	set	each	of	these	permissions.	To	see	what	permissions	have	been	set	on	a	file	or	directory,	we	can
use	ls	.	We	can	use	the	-l	(long	format)	option	to	have	ls	list	the	file	permissions	for	files	and	directories.	ls	-l	On	each	line,	the	first	character	identifies	the	type	of	entry	that	is	being	listed.	If	it	is	a	dash	(-)	it	is	a	file.	If	it	is	the	letter	d	it	is	a	directory.	The	next	nine	characters	represent	the	settings	for	the	three	sets	of	permissions.	The	first	three
characters	show	the	permissions	for	the	user	who	owns	the	file	(user	permissions).	The	middle	three	characters	show	the	permissions	for	members	of	the	file's	group	(group	permissions).	The	last	three	characters	show	the	permissions	for	anyone	not	in	the	first	two	categories	(other	permissions).	There	are	three	characters	in	each	set	of	permissions.
The	characters	are	indicators	for	the	presence	or	absence	of	one	of	the	permissions.	They	are	either	a	dash	(-)	or	a	letter.	If	the	character	is	a	dash,	it	means	that	permission	is	not	granted.	If	the	character	is	an	r,	w,	or	an	x,	that	permission	has	been	granted.	The	letters	represent:	r:	Read	permissions.	The	file	can	be	opened,	and	its	content	viewed.	w:
Write	permissions.	The	file	can	be	edited,	modified,	and	deleted.	x:	Execute	permissions.	If	the	file	is	a	script	or	a	program,	it	can	be	run	(executed).	For	example:	---	means	no	permissions	have	been	granted	at	all.	rwx	means	full	permissions	have	been	granted.	The	read,	write,	and	execute	indicators	are	all	present.	In	our	screenshot,	the	first	line
starts	with	a	d.	This	line	refers	to	a	directory	called	"archive."	The	owner	of	the	directory	is	"dave,"	and	the	name	of	the	group	that	the	directory	belongs	to	is	also	called	"dave."	The	next	three	characters	are	the	user	permissions	for	this	directory.	These	show	that	the	owner	has	full	permissions.	The	r,	w,	and	x	characters	are	all	present.	This	means
the	user	dave	has	read,	write	and	execute	permissions	for	that	directory.	The	second	set	of	three	characters	are	the	group	permissions,	these	are	r-x.	These	show	that	the	members	of	the	dave	group	have	read	and	execute	permissions	for	this	directory.	That	means	they	can	list	the	files	and	their	contents	in	the	directory,	and	they	can	cd	(execute)	into
that	directory.	They	do	not	have	write	permissions,	so	they	cannot	create,	edit,	or	delete	files.	The	final	set	of	three	characters	are	also	r-x.	These	permissions	apply	to	people	who	are	not	governed	by	the	first	two	sets	of	permissions.	These	people	(called"others")	have	read	and	execute	permissions	on	this	directory.	So,	to	summarise,	group	members
and	others	have	read	and	execute	permissions.	The	owner,	a	user	called	dave,	also	has	write	permissions.	For	all	of	the	other	files	(apart	from	the	mh.sh	script	file)	dave	and	members	of	the	dave	group	have	read	and	write	properties	on	the	files,	and	the	others	have	read	permissions	only.	For	the	special	case	of	the	mh.sh	script	file,	the	owner	dave
and	the	group	members	have	read,	write,	and	execute	permissions,	and	the	others	have	read	and	execute	permissions	only.	To	use	chmod	to	set	permissions,	we	need	to	tell	it:	Who:	Who	we	are	setting	permissions	for.	What:	What	change	are	we	making?	Are	we	adding	or	removing	the	permission?	Which:	Which	of	the	permissions	are	we	setting?	We
use	indicators	to	represent	these	values,	and	form	short	"permissions	statements"	such	as	u+x,	where	"u"	means	"	user"	(who),	"+"	means	add	(what),	and	"x"	means	the	execute	permission	(which).	The	"who"	values	we	can	use	are:	u:	User,	meaning	the	owner	of	the	file.	g:	Group,	meaning	members	of	the	group	the	file	belongs	to.	o:	Others,	meaning
people	not	governed	by	the	u	and	g	permissions.	a:	All,	meaning	all	of	the	above.	If	none	of	these	are	used,	chmod	behaves	as	if	"a"	had	been	used.	The	"what"	values	we	can	use	are:	-:	Minus	sign.	Removes	the	permission.	+:	Plus	sign.	Grants	the	permission.	The	permission	is	added	to	the	existing	permissions.	If	you	want	to	have	this	permission	and
only	this	permission	set,	use	the	=	option,	described	below.	=:	Equals	sign.	Set	a	permission	and	remove	others.	The	"which	"	values	we	can	use	are:	r:	The	read	permission.	w:	The	write	permission.	x:	The	execute	permission.	Let's	say	we	have	a	file	where	everyone	has	full	permissions	on	it.	ls	-l	new_file.txt	We	want	the	user	dave	to	have	read	and
write	permissions	and	the	group	and	other	users	to	have	read	permissions	only.	We	can	do	using	the	following	command:	chmod	u=rw,og=r	new_file.txt	Using	the	"="	operator	means	we	wipe	out	any	existing	permissions	and	then	set	the	ones	specified.	let's	check	the	new	permission	on	this	file:	ls	-l	new_file.txt	The	existing	permissions	have	been
removed,	and	the	new	permissions	have	been	set,	as	we	expected.	How	about	adding	a	permission	without	removing	the	existing	permissions	settings?	We	can	do	that	easily	too.	Let's	say	we	have	a	script	file	that	we	have	finished	editing.	We	need	to	make	it	executable	for	all	users.	Its	current	permissions	look	like	this:	ls	-l	new_script.sh	We	can	add
the	execute	permission	for	everyone	with	the	following	command:	chmod	a+x	new_script.sh	If	we	take	a	look	at	the	permissions,	we'll	see	that	the	execute	permission	is	now	granted	to	everyone,	and	the	existing	permissions	are	still	in	place.	ls	-l	new_script.sh	We	could	have	achieved	the	same	thing	without	the	"a"	in	the	"a+x"	statement.	The
following	command	would	have	worked	just	as	well.	chmod	+x	new_script.sh	We	can	apply	permissions	to	multiple	files	all	at	once.	These	are	the	files	in	the	current	directory:	ls	-l	Let's	say	we	want	to	remove	the	read	permissions	for	the	"other"	users	from	files	that	have	a	".page"	extension.	We	can	do	this	with	the	following	command:	chmod	o-r
*.page	Let's	check	what	effect	that	has	had:	ls	-l	As	we	can	see,	the	read	permission	has	been	removed	from	the	".page"	files	for	the	"other"	category	of	users.	No	other	files	have	been	affected.	If	we	had	wanted	to	include	files	in	subdirectories,	we	could	have	used	the	-R	(recursive)	option.	chmod	-R	o-r	*.page	Another	way	to	use	chmod	is	to	provide
the	permissions	you	wish	to	give	to	the	owner,	group,	and	others	as	a	three-digit	number.	The	leftmost	digit	represents	the	permissions	for	the	owner.	The	middle	digit	represents	the	permissions	for	the	group	members.	The	rightmost	digit	represents	the	permissions	for	the	others.	The	digits	you	can	use	and	what	they	represent	are	listed	here:	0:
(000)	No	permission.	1:	(001)	Execute	permission.	2:	(010)	Write	permission.	3:	(011)	Write	and	execute	permissions.	4:	(100)	Read	permission.	5:	(101)	Read	and	execute	permissions.	6:	(110)	Read	and	write	permissions.	7:	(111)	Read,	write,	and	execute	permissions.	Each	of	the	three	permissions	is	represented	by	one	of	the	bits	in	the	binary
equivalent	of	the	decimal	number.	So	5,	which	is	101	in	binary,	means	read	and	execute.	2,	which	is	010	in	binary,	would	mean	the	write	permission.	Using	this	method,	you	set	the	permissions	that	you	wish	to	have;	you	do	not	add	these	permissions	to	the	existing	permissions.	So	if	read	and	write	permissions	were	already	in	place	you	would	have	to
use	7	(111)	to	add	execute	permissions.	Using	1	(001)	would	remove	the	read	and	write	permissions	and	add	the	execute	permission.	Let's	add	the	read	permission	back	on	the	".page"	files	for	the	others	category	of	users.	We	must	set	the	user	and	group	permissions	as	well,	so	we	need	to	set	them	to	what	they	are	already.	These	users	already	have
read	and	write	permissions,	which	is	6	(110).	We	want	the	"others"	to	have	read	and	permissions,	so	they	need	to	be	set	to	4	(100).	The	following	command	will	accomplish	this:	chmod	664	*.page	This	sets	the	permissions	we	require	for	the	user,	group	members,	and	others	to	what	we	require.	The	users	and	group	members	have	their	permissions
reset	to	what	they	already	were,	and	the	others	have	the	read	permission	restored.	ls	-l	If	you	read	the	man	page	for	chmod	you'll	see	there	are	some	advanced	options	related	to	the	SETUID	and	SETGID	bits,	and	to	the	restricted	deletion	or	"sticky"	bit.	For	99%	of	the	cases	you'll	need	chmod	for,	the	options	described	here	will	have	you	covered.	Get
a	curated	assortment	of	Linux	tips,	tutorials	and	memes	directly	in	your	inbox.	Over	18,000	Linux	users	enjoy	it	twice	a	month.	Series	of	free	software	licenses	"GPL"	redirects	here.	For	other	uses,	see	GPL	(disambiguation).	This	article	has	multiple	issues.	Please	help	improve	it	or	discuss	these	issues	on	the	talk	page.	(Learn	how	and	when	to	remove
these	messages)	This	article	may	require	copy	editing	for	grammar,	style,	cohesion,	tone,	or	spelling.	You	can	assist	by	editing	it.	(November	2023)	(Learn	how	and	when	to	remove	this	message)	This	article	may	be	too	long	to	read	and	navigate	comfortably.	Consider	splitting	content	into	sub-articles,	condensing	it,	or	adding	subheadings.	Please
discuss	this	issue	on	the	article's	talk	page.	(December	2024)	(Learn	how	and	when	to	remove	this	message)	GNU	General	Public	LicenseAuthorRichard	StallmanLatest	version3PublisherFree	Software	FoundationPublished25	February	1989;	36	years	ago	(1989-02-25)SPDX	identifierGPL-3.0-or-laterGPL-3.0-onlyGPL-2.0-or-laterGPL-2.0-onlyGPL-1.0-
or-laterGPL-1.0-onlyDebian	FSG	compatibleYes[1]FSF	approvedYes[2]OSI	approvedYes	(applies	to	GPLv3-only	and	GPLv2-only)[3]CopyleftYes[2][4][5]Linking	from	code	with	a	different	licenceSoftware	licensed	under	GPL	compatible	licenses	only,	with	the	exception	of	the	LGPL	which	allows	all	programs.[6]Websitewww.gnu.org/licenses/gpl.html
The	GNU	General	Public	Licenses	(GNU	GPL,	or	simply	GPL)	are	a	series	of	widely	used	free	software	licenses,	or	copyleft	licenses,	that	guarantee	end	users	the	freedoms	to	run,	study,	share,	or	modify	the	software.[7]	The	GPL	was	the	first	copyleft	license	available	for	general	use.	It	was	originally	written	by	Richard	Stallman,	the	founder	of	the
Free	Software	Foundation	(FSF),	for	the	GNU	Project.	The	license	grants	the	recipients	of	a	computer	program	the	rights	of	the	Free	Software	Definition.[8]	The	licenses	in	the	GPL	series	are	all	copyleft	licenses,	which	means	that	any	derivative	work	must	be	distributed	under	the	same	or	equivalent	license	terms.	It	is	more	restrictive	than	the
Lesser	General	Public	License,	and	even	further	distinct	from	the	more	widely	used	permissive	software	licenses	such	as	BSD,	MIT,	and	Apache.	Historically,	the	GPL	license	family	has	been	one	of	the	most	popular	software	licenses	in	the	free	and	open-source	software	(FOSS)	domain.[7][9][10][11][12]	Prominent	free	software	programs	licensed
under	the	GPL	include	the	Linux	kernel	and	the	GNU	Compiler	Collection	(GCC).	David	A.	Wheeler	argues	that	the	copyleft	provided	by	the	GPL	was	crucial	to	the	success	of	Linux-based	systems,	giving	the	programmers	who	contributed	to	the	kernel	assurance	that	their	work	would	benefit	the	whole	world	and	remain	free,	rather	than	being
exploited	by	software	companies	that	would	not	have	to	give	anything	back	to	the	community.[13]	In	2007,	the	third	version	of	the	license	(GPLv3)	was	released	to	address	some	perceived	problems	with	the	second	version	(GPLv2)	which	were	discovered	during	the	latter's	long-time	usage.	To	keep	the	license	current,	the	GPL	license	includes	an
optional	"any	later	version"	clause,	allowing	users	to	choose	between	the	original	terms	or	the	terms	in	new	versions	as	updated	by	the	FSF.	Software	projects	licensed	with	the	optional	"or	later"	clause	include	the	GNU	Project,	while	projects	like	the	Linux	kernel	are	licensed	under	GPLv2	only.	The	"or	any	later	version"	clause	is	sometimes	known	as
a	"lifeboat	clause"	since	it	allows	combinations	between	different	versions	of	GPL-licensed	software	to	maintain	compatibility.	Usage	of	the	license	has	steadily	declined	since	the	2010s,	particularly	due	to	these	complexities,	but	also	a	perception	it	holds	back	the	modern	open	source	landscape	from	growth	and	commercialization.[14][15]	The	original
GPL	was	written	by	Richard	Stallman	in	1989,	for	use	with	programs	released	as	part	of	the	GNU	Project.	It	was	based	on	a	unification	of	similar	licenses	used	for	early	versions	of	GNU	Emacs,[16]	the	GNU	Debugger,	and	the	GNU	C	Compiler.[17]	These	licenses	contained	similar	provisions	to	the	modern	GPL,	but	were	specific	to	each	program,
rendering	them	incompatible,	despite	being	the	same	license.[18]	Stallman's	goal	was	to	produce	one	license	that	could	be	used	for	any	project,	thus	making	it	possible	for	many	projects	to	share	code.	The	second	version	of	the	license,	GPLv2,	was	released	in	1991.	Over	the	following	15	years,	members	of	the	free	software	community	became
concerned	over	problems	in	the	GPLv2	license	that	could	let	someone	exploit	GPL-licensed	software	in	ways	contrary	to	the	license's	intent.[19]	These	problems	included	tivoization	(the	inclusion	of	GPL-licensed	software	in	hardware	that	refuses	to	run	modified	versions	of	its	software),	compatibility	issues	similar	to	those	of	the	AGPL	(v1),	and	patent
deals	between	Microsoft	and	distributors	of	free	and	open-source	software,	which	some	viewed	as	an	attempt	to	use	patents	as	a	weapon	against	the	free	software	community.	Version	3	was	developed	as	an	attempt	to	address	these	concerns	and	was	officially	released	on	29	June	2007.[20]	GNU	General	Public	License,	version	1Published25	February
1989Websitewww.gnu.org/licenses/old-licenses/gpl-1.0.htmlDeprecatedyes	Version	1	of	the	GNU	GPL,[21]	released	on	25	February	1989,[22]	was	written	to	protect	against	the	two	main	methods	by	which	software	distributors	restricted	the	freedoms	that	define	free	software.	The	first	problem	is	that	distributors	might	publish	only	binary	files	that
are	executable,	but	not	readable	or	modifiable	by	humans.	To	prevent	this,	the	GPLv1	states	that	copying	and	distributing	copies	of	any	portion	of	the	program	must	also	make	the	human-readable	source	code	available	under	the	same	licensing	terms.[a]	The	second	problem	is	that	distributors	might	add	restrictions,	either	to	the	license	or	by
combining	the	software	with	other	software	that	had	other	restrictions	on	distribution.	The	union	of	two	sets	of	restrictions	would	apply	to	the	combined	work,	thus	adding	unacceptable	constrictions.	To	prevent	this,	the	GPLv1	states	that	modified	versions,	as	a	whole,	had	to	be	distributed	under	the	terms	of	GPLv1.[b]	Therefore,	software	distributed
under	the	terms	of	the	GPLv1	could	be	combined	with	software	under	more	permissive	terms,	as	this	would	not	change	the	terms	under	which	the	whole	could	be	distributed.	However,	software	distributed	under	GPLv1	could	not	be	combined	with	software	distributed	under	a	more	restrictive	license,	as	this	would	conflict	with	the	requirement	that
the	whole	be	distributable	under	the	terms	of	GPLv1.	GNU	General	Public	License,	version	2PublishedJune	1991Websitewww.gnu.org/licenses/old-licenses/gpl-2.0.html	According	to	Richard	Stallman,	the	major	change	in	version	2	of	the	GPL	was	the	"Liberty	or	Death"	clause,	as	he	calls	it[18]	–	Section	7.	The	section	says	that	licensees	may	distribute
a	GPL-covered	work	only	if	they	can	satisfy	all	of	the	license's	obligations,	despite	any	other	legal	obligations	they	might	have.	In	other	words,	the	obligations	of	the	license	may	not	be	severed	due	to	conflicting	obligations.	This	provision	is	intended	to	discourage	any	party	from	using	a	patent	infringement	claim	or	other	litigation	to	impair	users'
freedom	under	the	license.[18]	By	1990,	it	was	becoming	apparent	that	a	less	restrictive	license	would	be	strategically	useful	for	the	C	library	and	for	software	libraries	that	did	the	same	job	of	existing	proprietary	ones.[23]	When	the	GPLv2	was	released	in	June	1991,	a	second	license	–	the	GNU	Library	General	Public	License	–	was	introduced	at	the
same	time	and	numbered	with	version	2	to	show	that	both	were	complementary.[24]	The	version	numbers	diverged	in	1999	when	version	2.1	of	the	LGPL	was	released,	which	renamed	it	the	GNU	Lesser	General	Public	License	to	reflect	its	place	in	the	philosophy.	The	GPLv2	was	also	modified	to	refer	to	the	new	name	of	the	LGPL,	but	its	version
number	remained	the	same,	resulting	in	the	original	GPLv2	not	being	recognized	by	the	Software	Package	Data	Exchange	(SPDX).[25][failed	verification]	The	license	includes	instructions	to	specify	"version	2	of	the	License,	or	(at	your	option)	any	later	version"	to	allow	the	flexible	optional	use	of	either	version	2	or	3,	but	some	developers	change	this
to	specify	"version	2"	only.	GNU	General	Public	License,	version	3Published29	June	2007Websitewww.gnu.org/licenses/gpl-3.0.html	In	late	2005,	the	Free	Software	Foundation	(FSF)	announced	work	on	version	3	of	the	GPL.	On	16	January	2006,	the	first	"discussion	draft"	of	GPLv3	was	published,	and	the	public	consultation	began.	The	official	GPLv3
was	released	by	the	FSF	on	29	June	2007.	GPLv3	was	written	by	Richard	Stallman,	with	legal	counsel	from	Eben	Moglen	and	Richard	Fontana	from	the	Software	Freedom	Law	Center.[26][27]	According	to	Stallman,	the	most	important	changes	were	in	relation	to	software	patents,	free	software	license	compatibility,	the	definition	of	"source	code",	and
hardware	restrictions	on	software	modifications,	such	as	tivoization.[26][28]	Other	changes	related	to	internationalization,	how	license	violations	are	handled,	and	how	additional	permissions	could	be	granted	by	the	copyright	holder.	The	concept	of	"software	propagation,"	was	explicitly	defined	as	a	term	for	the	copying	and	duplication	of	software.
The	public	consultation	process	was	coordinated	by	the	Free	Software	Foundation	with	assistance	from	Software	Freedom	Law	Center,	Free	Software	Foundation	Europe,[29]	and	other	free	software	groups.	Comments	were	collected	from	the	public	via	the	gplv3.fsf.org	web	portal,[30]	using	purpose-written	software	called	stet.	By	the	end	of	the
comment	period,	a	total	of	2,636	comments	had	been	submitted.[31]	The	third	draft	was	released	on	28	March	2007.[32]	This	draft	included	language	intended	to	prevent	patent-related	agreements	such	as	the	controversial	Microsoft-Novell	patent	agreement,	and	restricted	the	anti-tivoization	clauses	to	a	legal	definition	of	a	"user"	and	a	"consumer
product".	It	also	explicitly	removed	the	section	on	"Geographical	Limitations",	the	probable	removal	of	this	section	having	been	announced	at	the	launch	of	the	public	consultation.	Richard	Stallman	at	the	launch	of	the	first	draft	of	the	GNU	GPLv3	at	MIT,	Cambridge,	Massachusetts,	United	States.	To	his	right	is	Columbia	Law	Professor	Eben	Moglen,
chairman	of	the	Software	Freedom	Law	Center.	The	fourth	and	final	discussion	draft[33]	was	released	on	31	May	2007.	It	introduced	Apache	License	version	2.0	compatibility	(prior	versions	are	incompatible),	clarified	the	role	of	outside	contractors,	and	made	an	exception	to	avoid	the	perceived	problems	of	a	Microsoft–Novell	style	agreement,	saying
in	Section	11	paragraph	6	that:	You	may	not	convey	a	covered	work	if	you	are	a	party	to	an	arrangement	with	a	third	party	that	is	in	the	business	of	distributing	software,	under	which	you	make	payment	to	the	third	party	based	on	the	extent	of	your	activity	of	conveying	the	work,	and	under	which	the	third	party	grants,	to	any	of	the	parties	who	would
receive	the	covered	work	from	you,	a	discriminatory	patent	license	...	This	aimed	to	make	such	future	deals	ineffective.	The	license	was	also	meant	to	cause	Microsoft	to	extend	the	patent	licenses	it	granted	to	Novell	customers	for	the	use	of	GPLv3	software	to	all	users	of	that	GPLv3	software;	this	was	possible	only	if	Microsoft	was	legally	a	"conveyor"
of	the	GPLv3	software.[34]	Early	drafts	of	GPLv3	also	let	licensors	add	an	AGPL-like	requirement	that	would	have	plugged	a	loophole	in	the	GPL	regarding	application	service	providers.[35][36]	The	freedom	to	run,	study,	and	share	the	source	code	and	guarantee	copyleft	protections	is	somewhat	ambiguous	in	the	context	of	web	services.	However,
there	were	concerns	expressed	about	the	administrative	costs	of	checking	code	for	the	additional	requirements	in	the	GPLv3	drafts,	and	it	was	decided	to	keep	the	GPL	and	the	AGPL	license	separated.[37]	Others,	notably	high-profile	Linux	kernel	developers	such	as	Linus	Torvalds,	Greg	Kroah-Hartman,	and	Andrew	Morton,	commented	to	the	mass
media	and	made	public	statements	about	their	objections	to	parts	of	the	GPLv3	drafts.[38]	The	kernel	developers	disapproved	of	GPLv3	draft	clauses	regarding	DRM/tivoization,	patents,	and	"additional	restrictions",	and	warned	of	a	Balkanisation	of	the	"Open	Source	Universe".[38][39]	Linus	Torvalds,	who	decided	not	to	adopt	the	GPLv3	for	the	Linux
kernel,[40]	reiterated	his	criticism	several	years	later.[41][42]	GPLv3	improved	compatibility	with	several	free	software	licenses	such	as	the	Apache	License,	version	2.0,	and	the	GNU	Affero	General	Public	License,	which	GPLv2	could	not	be	combined	with.[43]	However,	GPLv3	software	could	only	be	combined	and	share	code	with	GPLv2	software	if
the	GPLv2	license	used	had	the	optional	"or	later"	clause	and	the	software	was	upgraded	to	GPLv3.	While	the	"GPLv2	or	any	later	version"	clause	is	considered	by	FSF	as	the	most	common	form	of	licensing	GPLv2	software,[44]	Toybox	developer	Rob	Landley	described	it	as	a	lifeboat	clause.[c]	Software	projects	licensed	with	the	optional	"or	later"
clause	include	Joomla[47]	and	the	GNU	Project,[48]	while	a	prominent	example	without	the	clause	is	the	Linux	kernel.[40][49]	The	final	version	of	the	license	text	was	published	on	29	June	2007.[50]	The	terms	and	conditions	of	the	GPL	must	be	made	available	to	anybody	receiving	a	copy	of	a	work	that	has	a	GPL	license	applied	to	it	("the	licensee").
Any	licensee	who	adheres	to	the	terms	and	conditions	is	given	permission	to	modify	the	work,	as	well	as	to	copy	and	redistribute	the	work	or	any	derivative	version.	The	licensee	is	allowed	to	charge	a	fee	for	this	service	or	do	this	free	of	charge.	This	latter	point	distinguishes	the	GPL	from	software	licenses	that	prohibit	commercial	redistribution.	The
FSF	argues	that	free	software	should	not	place	restrictions	on	commercial	use,[51]	and	the	GPL	explicitly	states	that	GPL	works	may	be	sold	at	any	price.	The	GPL	additionally	states	that	a	distributor	may	not	impose	"further	restrictions	on	the	rights	granted	by	the	GPL".	This	forbids	activities	such	as	distributing	the	software	under	a	non-disclosure
agreement	or	contract.	The	fourth	section	of	the	GPLv2	and	the	seventh	section	the	GPLv3	require	that	programs	distributed	as	pre-compiled	binaries	be	accompanied	by	a	copy	of	the	source	code,	a	written	offer	to	distribute	the	source	code	via	the	same	mechanism	as	the	pre-compiled	binary,	or	the	written	offer	to	obtain	the	source	code	that	the
user	got	when	they	received	the	pre-compiled	binary	under	the	GPL.	The	second	section	of	the	GPLv2	and	the	fifth	section	of	the	GPLv3	also	require	distributing	the	license	along	with	the	program.	The	GPLv3	allows	making	the	source	code	available	in	additional	ways	in	fulfillment	of	the	seventh	section.	These	include	downloading	source	code	from
an	adjacent	network	server	or	by	peer-to-peer	transmission,	provided	that	is	how	the	compiled	code	was	available	and	there	are	"clear	directions"	on	where	to	find	the	source	code.	The	FSF	does	not	hold	the	copyright	for	a	work	released	under	the	GPL	unless	an	author	explicitly	assigns	copyrights	to	the	FSF	(which	seldom	happens	except	for
programs	that	are	part	of	the	GNU	Project).	Only	the	individual	copyright	holders	have	the	authority	to	sue	when	a	license	violation	is	suspected.	Printed	GPL	statements	for	consumer	entertainment	devices	which	incorporate	GPL	components	Software	under	the	GPL	may	be	run	for	all	purposes,	including	commercial	purposes	and	even	as	a	tool	for
creating	proprietary	software,	such	as	when	using	GPL-licensed	compilers.[52]	Users	or	companies	who	distribute	GPL-licensed	works	(e.g.	software),	may	charge	a	fee	for	copies	or	give	them	free	of	charge.	This	distinguishes	the	GPL	from	shareware	software	licenses	that	allow	copying	for	personal	use	but	prohibit	commercial	distribution	or
proprietary	licenses	where	copying	is	prohibited	by	copyright	law.	The	FSF	argues	that	freedom-respecting	free	software	should	also	not	restrict	commercial	use	and	distribution	(including	redistribution):[51][53]	In	purely	private	(or	internal)	use—with	no	sales	and	no	distribution—the	software	code	may	be	modified	and	parts	reused	without
requiring	the	source	code	to	be	released.	For	sales	or	distribution,	the	entire	source	code	needs	to	be	made	available	to	end	users,	including	any	code	changes	and	additions—in	that	case,	copyleft	is	applied	to	ensure	that	end	users	retain	the	freedoms	defined	above.	However,	software	running	as	an	application	program	under	a	GPL-licensed
operating	system	such	as	Linux	is	not	required	to	be	licensed	under	GPL	or	to	be	distributed	with	source-code	availability—the	licensing	depends	only	on	the	used	libraries	and	software	components	and	not	on	the	underlying	platform.[54]	For	example,	if	a	program	consists	only	of	original	source	code,	or	is	combined	with	source	code	from	other
software	components,[d]	then	the	custom	software	components	need	not	be	licensed	under	GPL	and	need	not	make	their	source	code	available;	even	if	the	underlying	operating	system	used	is	licensed	under	the	GPL,	applications	running	on	it	are	not	considered	derivative	works.[54]	Only	if	GPL-licensed	parts	are	used	in	a	program	(and	the	program
is	distributed),	then	all	other	source	code	of	the	program	needs	to	be	made	available	under	the	same	license	terms.	The	GNU	Lesser	General	Public	License	(LGPL)	was	created	to	have	a	weaker	copyleft	than	the	GPL,	in	that	it	does	not	require	custom-developed	source	code	(distinct	from	the	LGPL-licensed	parts)	to	be	made	available	under	the	same
license	terms.	The	fifth	section	of	the	GPLv3	states	that	no	GPL-licensed	code	shall	be	considered	an	effective	"technical	protection	measure"	as	defined	by	Article	11	of	the	WIPO	Copyright	Treaty,	and	that	those	who	convey	the	work	waive	all	legal	power	to	prohibit	circumvention	of	the	technical	protection	measure	"to	the	extent	such	circumvention
is	effected	by	exercising	rights	under	this	License	with	respect	to	the	covered	work".	This	means	that	users	cannot	be	held	liable	for	circumventing	DRM	implemented	using	GPLv3-licensed	code	under	laws	such	as	the	US	Digital	Millennium	Copyright	Act	(DMCA).[55]	Main	article:	Copyleft	The	distribution	rights	granted	by	the	GPL	for	modified
versions	of	the	work	are	not	unconditional.	When	someone	distributes	a	GPL-licensed	work	plus	their	own	modifications,	the	requirements	for	distributing	the	whole	work	cannot	be	any	greater	than	the	requirements	that	are	in	the	GPL.	This	requirement	is	known	as	copyleft.	It	earns	its	legal	power	from	the	use	of	copyright	on	software	programs.
Because	a	GPL	work	is	copyrighted,	a	licensee	has	no	right	to	redistribute	it,	not	even	in	modified	form	(barring	fair	use),	except	under	the	terms	of	the	license.	One	is	only	required	to	adhere	to	the	terms	of	the	GPL	if	one	wishes	to	exercise	rights	normally	restricted	by	copyright	law,	such	as	redistribution.	Conversely,	if	one	distributes	copies	of	the
work	without	abiding	by	the	terms	of	the	GPL	(for	instance,	by	keeping	the	source	code	secret),	they	can	be	sued	by	the	original	author	under	copyright	law.	Copyright	law	has	historically	been	used	to	prevent	distribution	of	work	by	parties	not	authorized	by	the	creator.	Copyleft	uses	the	same	copyright	laws	to	accomplish	a	very	different	goal.	It
grants	rights	to	distribution	to	all	parties	insofar	as	they	provide	the	same	rights	to	subsequent	ones,	and	they	to	the	next,	etc.	In	this	way,	the	GPL	and	other	copyleft	licenses	attempt	to	enforce	libre	access	to	the	work	and	all	derivatives.[56]	Many	distributors	of	GPL-licensed	programs	bundle	the	source	code	with	the	executables.	An	alternative
method	of	satisfying	the	copyleft	is	to	provide	a	written	offer	to	provide	the	source	code	on	a	physical	medium	(such	as	a	CD)	upon	request.	In	practice,	many	GPL-licensed	programs	are	distributed	over	the	Internet,	and	the	source	code	is	made	available	over	FTP	or	HTTP.	For	Internet	distribution,	this	complies	with	the	license.	Copyleft	applies	only
when	a	person	seeks	to	redistribute	the	program.	Developers	may	make	private	modified	versions	with	no	obligation	to	divulge	the	modifications,	as	long	as	they	do	not	distribute	the	modified	software	to	anyone	else.	Copyleft	applies	only	to	the	software,	and	not	to	its	output	(unless	that	output	is	itself	a	derivative	work	of	the	program).[e]	For
example,	a	public	web	portal	running	a	modified	derivative	of	a	GPL-licensed	content	management	system	is	not	required	to	distribute	its	changes	to	the	underlying	software,	because	the	modified	web	portal	is	not	being	redistributed	but	rather	hosted,	and	also	because	the	web	portal	output	is	also	not	a	derivative	work	of	the	GPL-licensed	content
management	system.	There	has	been	debate	on	whether	it	is	a	violation	of	the	GPLv1	to	release	the	source	code	in	obfuscated	form,	such	as	in	cases	in	which	the	author	is	less	willing	to	make	the	source	code	available.	The	consensus	was	that	while	unethical,	it	was	not	considered	a	violation.	The	issue	was	clarified	when	the	license	was	altered	with
v2	to	require	that	the	"preferred"	version	of	the	source	code	be	made	available.[58]	The	GPL	was	designed	as	a	license,	rather	than	a	contract.[59]	In	some	common	law	jurisdictions,	the	legal	distinction	between	a	license	and	a	contract	is	an	important	one:	contracts	are	enforceable	by	contract	law,	whereas	licenses	are	enforced	under	copyright	law.
However,	this	distinction	is	not	useful	in	the	many	jurisdictions	where	there	are	no	differences	between	contracts	and	licenses,	such	as	civil	law	systems.[60]	Those	who	do	not	accept	the	GPL's	terms	and	conditions	do	not	have	permission,	under	copyright	law,	to	copy	or	distribute	GPL-licensed	software	or	derivative	works.	However,	if	they	do	not
redistribute	the	GPL-licensed	program,	they	may	still	use	the	software	within	their	organization	however	they	like,	and	works	(including	programs)	constructed	by	the	use	of	the	program	are	not	required	to	be	covered	by	this	license.	Software	developer	Allison	Randal	argued	that	the	GPLv3	as	a	license	is	unnecessarily	confusing	for	lay	readers,	and
could	be	simplified	while	retaining	the	same	conditions	and	legal	force.[61]	In	April	2017,	a	US	federal	court	ruled	that	an	open-source	license	is	an	enforceable	contract.[62]	In	October	2021	Software	Freedom	Conservancy	sued	Vizio	over	breach	of	contract	as	an	end	user	to	request	source	code	for	Vizio's	TVs.	A	federal	judge	has	ruled	in	the	interim
that	the	GPL	is	an	enforceable	contract	by	end	users	as	well	as	a	license	for	copyright	holders.[63]	The	text	of	the	GPL	is	itself	copyrighted,	and	the	copyright	is	held	by	the	Free	Software	Foundation.	The	FSF	permits	people	to	create	new	licenses	based	on	the	GPL,	as	long	as	the	derived	licenses	do	not	use	the	GPL	preamble	without	permission.	This
is	discouraged,	however,	since	such	a	license	might	be	incompatible	with	the	GPL[64]	and	causes	a	perceived	license	proliferation.	Other	licenses	created	by	the	GNU	Project	include	the	GNU	Lesser	General	Public	License,	GNU	Free	Documentation	License,	and	GNU	Affero	General	Public	License.	The	text	of	the	GPL	is	not	itself	under	the	GPL.	The
license's	copyright	disallows	modification	of	the	license.	Copying	and	distributing	the	license	is	allowed	since	the	GPL	requires	recipients	to	get	"a	copy	of	this	License	along	with	the	Program."[65]	According	to	the	GPL	FAQ,	anyone	can	create	a	new	license	using	a	modified	version	of	the	GPL	as	long	as	they	use	a	different	name	for	the	license,	do
not	mention	"GNU,"	and	remove	the	preamble.	However,	the	preamble	can	be	used	in	a	modified	license	if	permission	to	use	it	is	obtained	from	the	Free	Software	Foundation	(FSF).[66]	This	section	is	written	like	a	personal	reflection,	personal	essay,	or	argumentative	essay	that	states	a	Wikipedia	editor's	personal	feelings	or	presents	an	original
argument	about	a	topic.	Please	help	improve	it	by	rewriting	it	in	an	encyclopedic	style.	(November	2023)	(Learn	how	and	when	to	remove	this	message)	According	to	the	FSF,	"The	GPL	does	not	require	you	to	release	your	modified	version	or	any	part	of	it.	You	are	free	to	make	modifications	and	use	them	privately,	without	ever	releasing	them."[67]
However,	if	one	releases	a	GPL-licensed	entity	to	the	public,	there	is	an	issue	regarding	linking:	namely,	whether	a	proprietary	program	that	uses	a	GPL	library	is	in	violation	of	the	GPL.	This	key	dispute	is	whether	non-GPL	software	can	legally	statically	link	or	dynamically	link	to	GPL	libraries.	Different	opinions	exist	on	this	issue.	The	GPL	is	clear	in
requiring	that	all	derivative	works	of	code	under	the	GPL	must	themselves	be	under	the	GPL.	Ambiguity	arises	with	regard	to	using	GPL	libraries	and	bundling	GPL	software	into	a	larger	package	(perhaps	mixed	into	a	binary	via	static	linking).	This	is	ultimately	a	question	not	of	the	GPL	per	se,	but	of	how	copyright	law	defines	derivative	works.	The
following	points	of	view	exist:	The	Free	Software	Foundation	(which	holds	the	copyright	of	several	notable	GPL-licensed	software	products	and	of	the	license	text	itself)	asserts	that	an	executable	that	uses	a	dynamically	linked	library	is	indeed	a	derivative	work.	This	does	not,	however,	apply	to	separate	programs	communicating	with	one	another.[68]
The	Free	Software	Foundation	also	created	the	LGPL,	which	is	nearly	identical	to	the	GPL,	but	with	additional	permissions	to	allow	linking	for	the	purposes	of	"using	the	library".	Richard	Stallman	and	the	FSF	specifically	encourage	library	writers	to	license	under	the	GPL	so	that	proprietary	programs	cannot	use	the	libraries,	in	an	effort	to	protect
the	free	software	world	by	giving	it	more	tools	than	the	proprietary	world.[69]	Some	people	believe	that	while	static	linking	produces	derivative	works,	it	is	not	clear	whether	an	executable	that	dynamically	links	to	a	GPL	code	should	be	considered	a	derivative	work	(see	weak	copyleft).	Linux	author	Linus	Torvalds	agrees	that	dynamic	linking	can
create	derived	works	but	disagrees	over	the	circumstances.[70]	A	Novell	lawyer	has	written	that	dynamic	linking	not	being	derivative	"makes	sense"	but	is	not	"clear-cut",	and	that	evidence	for	good-intentioned	dynamic	linking	can	be	seen	by	the	existence	of	proprietary	Linux	kernel	drivers.[71]	In	Galoob	v.	Nintendo,	the	United	States	Ninth	Circuit
Court	of	Appeals	defined	a	derivative	work	as	having	"'form'	or	permanence"	and	noted	that	"the	infringing	work	must	incorporate	a	portion	of	the	copyrighted	work	in	some	form",[72]	but	there	have	been	no	clear	court	decisions	to	resolve	this	particular	conflict.	According	to	an	article	in	the	Linux	Journal,	Lawrence	Rosen	(a	one-time	Open	Source
Initiative	general	counsel)	argues	that	the	method	of	linking	is	mostly	irrelevant	to	the	question	about	whether	a	piece	of	software	is	a	derivative	work;	more	important	is	the	question	about	whether	the	software	was	intended	to	interface	with	client	software	or	libraries.[73]	He	states,	"The	primary	indication	of	whether	a	new	program	is	a	derivative
work	is	whether	the	source	code	of	the	original	program	was	used	[in	a	copy-paste	sense],	modified,	translated	or	otherwise	changed	in	any	way	to	create	the	new	program.	If	not,	then	I	would	argue	that	it	is	not	a	derivative	work,"[73]	and	lists	numerous	other	points	regarding	intent,	bundling,	and	linkage	mechanism.	He	further	argues	on	his	firm's
website[74]	that	such	"market-based"	factors	are	more	important	than	the	linking	technique.	There	is	also	the	specific	issue	of	whether	a	plugin	or	module	(such	as	the	NVidia	or	ATI	graphics	card	kernel	modules)	must	also	be	GPL	if	it	could	reasonably	be	considered	its	own	work.	This	point	of	view	suggests	that	reasonably	separate	plugins,	or
plugins	for	software	designed	to	use	plugins,	could	be	licensed	under	an	arbitrary	license	if	the	work	is	GPLv2.	Of	particular	interest	is	the	GPLv2	paragraph:	You	may	modify	your	copy	or	copies	of	the	Program	or	any	portion	of	it,	thus	forming	a	work	based	on	the	Program,	and	copy	and	distribute	such	modifications	or	work	under	the	terms	of
Section	1	above,	provided	that	you	also	meet	all	of	these	conditions:	...	b)	You	must	cause	any	work	that	you	distribute	or	publish,	that	in	whole	or	in	part	contains	or	is	derived	from	the	Program	or	any	part	thereof,	to	be	licensed	as	a	whole	at	no	charge	to	all	third	parties	under	the	terms	of	this	License.	...	These	requirements	apply	to	the	modified
work	as	a	whole.	If	identifiable	sections	of	that	work	are	not	derived	from	the	Program	and	can	be	reasonably	considered	independent	and	separate	works	in	themselves,	then	this	License,	and	its	terms,	do	not	apply	to	those	sections	when	you	distribute	them	as	separate	works.	But	when	you	distribute	the	same	sections	as	part	of	a	whole	which	is	a
work	based	on	the	Program,	the	distribution	of	the	whole	must	be	on	the	terms	of	this	License,	whose	permissions	for	other	licensees	extend	to	the	entire	whole,	and	thus	to	each	and	every	part	regardless	of	who	wrote	it.	The	GPLv3	has	a	different	clause:	You	may	convey	a	work	based	on	the	Program	or	the	modifications	to	produce	it	from	the
Program,	in	the	form	of	source	code	under	the	terms	of	Section	4,	provided	that	you	also	meet	all	of	these	conditions:	...	c)	You	must	license	the	entire	work,	as	a	whole,	under	this	License	to	anyone	who	comes	into	possession	of	a	copy.	This	License	will	therefore	apply,	along	with	any	applicable	Section	7	additional	terms,	to	the	whole	of	the	work,
and	all	its	parts,	regardless	of	how	they	are	packaged.	This	License	gives	no	permission	to	license	the	work	in	any	other	way,	but	it	does	not	invalidate	such	permission	if	you	have	separately	received	it.	...	A	compilation	of	a	covered	work	with	other	separate	and	independent	works,	which	are	not	by	their	nature	extensions	of	the	covered	work,	and
which	are	not	combined	with	it	such	as	to	form	a	larger	program,	in	or	on	a	volume	of	a	storage	or	distribution	medium,	is	called	an	"aggregate"	if	the	compilation	and	its	resulting	copyright	are	not	used	to	limit	the	access	or	legal	rights	of	the	compilation's	users	beyond	what	the	individual	works	permit.	Inclusion	of	a	covered	work	in	an	aggregate
does	not	cause	this	License	to	apply	to	the	other	parts	of	the	aggregate.	As	a	case	study,	some	supposedly	proprietary	plugins	and	themes/skins	for	GPLv2	CMS	software	such	as	Drupal	and	WordPress	have	come	under	fire,	with	both	sides	of	the	argument	taken.[75]	The	FSF	differentiates	on	how	the	plugin	is	being	invoked.	If	the	plugin	is	invoked
through	dynamic	linkage	and	it	performs	function	calls	to	the	GPL	program	then	it	is	most	likely	a	derivative	work.[76]	The	mere	act	of	communicating	with	other	programs	does	not,	by	itself,	require	all	software	to	be	GPL;	nor	does	distributing	GPL	software	with	non-GPL	software.	However,	minor	conditions	must	be	followed	that	ensure	the	rights
of	GPL	software	are	not	restricted.	The	following	is	a	quote	from	the	gnu.org	GPL	FAQ,	which	describes	to	what	extent	software	is	allowed	to	communicate	with	and	be	bundled	with	GPL	programs:[77]	What	is	the	difference	between	an	"aggregate"	and	other	kinds	of	"modified	versions"?	An	"aggregate"	consists	of	a	number	of	separate	programs,
distributed	together	on	the	same	CD-ROM	or	other	media.	The	GPL	permits	you	to	create	and	distribute	an	aggregate,	even	when	the	licenses	of	the	other	software	are	non-free	or	GPL-incompatible.	The	only	condition	is	that	you	cannot	release	the	aggregate	under	a	license	that	prohibits	users	from	exercising	rights	that	each	program's	individual
license	would	grant	them.	Where's	the	line	between	two	separate	programs,	and	one	program	with	two	parts?	This	is	a	legal	question,	which	ultimately	judges	will	decide.	We	believe	that	a	proper	criterion	depends	both	on	the	mechanism	of	communication	(exec,	pipes,	rpc,	function	calls	within	a	shared	address	space,	etc.)	and	the	semantics	of	the
communication	(what	kinds	of	information	are	interchanged).	If	the	modules	are	included	in	the	same	executable	file,	they	are	definitely	combined	in	one	program.	If	modules	are	designed	to	run	linked	together	in	a	shared	address	space,	that	almost	surely	means	combining	them	into	one	program.	By	contrast,	pipes,	sockets,	and	command-line
arguments	are	communication	mechanisms	normally	used	between	two	separate	programs.	So	when	they	are	used	for	communication,	the	modules	normally	are	separate	programs.	But	if	the	semantics	of	the	communication	are	intimate	enough,	exchanging	complex	internal	data	structures,	that	too	could	be	a	basis	to	consider	the	two	parts	as
combined	into	a	larger	program.	The	FSF	thus	draws	the	line	between	"library"	and	"other	program"	via	1)	"complexity"	and	"intimacy"	of	information	exchange	and	2)	mechanism	(rather	than	semantics),	but	resigns	that	the	question	is	not	clear-cut	and	that	in	complex	situations,	case	law	will	decide.	See	also:	SCO-Linux	controversies	and	SCO	v.
IBM	The	first	known	violation	of	the	GPL	was	in	1989,	when	NeXT	extended	the	GCC	compiler	to	support	Objective-C,	but	did	not	publicly	release	the	changes.[78]	After	an	inquiry	they	created	a	public	patch.	There	was	no	lawsuit	filed	for	this	violation.[79]	In	2002,	MySQL	AB	sued	Progress	NuSphere	for	copyright	and	trademark	infringement	in	US

federal	court.	NuSphere	had	allegedly	violated	MySQL's	copyright	by	linking	MySQL's	GPL-licensed	code	with	NuSphere	Gemini	table	without	complying	with	the	license.	After	a	preliminary	hearing	on	27	February	2002,	the	parties	entered	settlement	talks	and	eventually	settled.[f]	After	the	hearing,	FSF	commented	that	the	judge	"made	clear	that
she	sees	the	GNU	GPL	to	be	an	enforceable	and	binding	license."[80]	In	August	2003,	the	SCO	Group	stated	that	they	believed	the	GPL	to	have	no	legal	validity	and	that	they	intended	to	pursue	lawsuits	over	sections	of	code	supposedly	copied	from	SCO	Unix	into	the	Linux	kernel.	This	was	a	problematic	stand	for	them,	as	they	had	distributed	Linux
and	other	GPL-licensed	code	in	their	Caldera	OpenLinux	distribution,	and	there	is	little	evidence	that	they	had	any	legal	right	to	do	so	except	under	the	terms	of	the	GPL.[citation	needed]	In	February	2018,	after	a	federal	circuit	court	judgment,	appeal,	and	the	case	being	(partially)	remanded	to	the	circuit	court,	the	parties	restated	their	remaining
claims	and	provided	a	plan	to	move	toward	final	judgement.[81]	The	remaining	claims	revolved	around	Project	Monterey	and	were	finally	settled	in	November	2021	by	IBM	paying	$14.25	million	to	the	TSG	(previously	SCO)	bankruptcy	trustee.[82]	In	April	2004,	the	netfilter/iptables	project	was	granted	a	preliminary	injunction	against	Sitecom
Germany	by	Munich	District	Court	after	Sitecom	refused	to	desist	from	distributing	Netfilter's	GPL-licensed	software	in	violation	of	the	terms	of	the	GPL.	Harald	Welte	of	Netfilter	was	represented	by	ifrOSS	co-founder	Till	Jaeger.	In	July	2004,	the	German	court	confirmed	this	injunction	as	a	final	ruling	against	Sitecom.[83]	The	court's	justification
was	that:	Defendant	has	infringed	on	the	copyright	of	the	plaintiff	by	offering	the	software	'netfilter/iptables'	for	download	and	by	advertising	its	distribution,	without	adhering	to	the	license	conditions	of	the	GPL.	Said	actions	would	only	be	permissible	if	the	defendant	had	a	license	grant.	...	This	is	independent	of	the	questions	whether	the	licensing
conditions	of	the	GPL	have	been	effectively	agreed	upon	between	plaintiff	and	defendant	or	not.	If	the	GPL	were	not	agreed	upon	by	the	parties,	defendant	would	notwithstanding	lack	the	necessary	rights	to	copy,	distribute,	and	make	the	software	'netfilter/iptables'	publicly	available.	This	exactly	mirrored	the	predictions	given	previously	by	the	FSF's
Eben	Moglen.	This	ruling	was	important	because	it	was	the	first	time	that	a	court	had	confirmed	that	violating	terms	of	the	GPL	could	be	a	copyright	violation	and	established	jurisprudence	as	to	the	enforceability	of	the	GPLv2	under	German	law.[84]	In	May	2005,	Daniel	Wallace	filed	suit	against	the	Free	Software	Foundation	in	the	Southern	District
of	Indiana,	contending	that	the	GPL	is	an	illegal	attempt	to	fix	prices	(at	zero).	The	suit	was	dismissed	in	March	2006,	on	the	grounds	that	Wallace	had	failed	to	state	a	valid	antitrust	claim;	the	court	noted	that	"the	GPL	encourages,	rather	than	discourages,	free	competition	and	the	distribution	of	computer	operating	systems,	the	benefits	of	which
directly	pass	to	consumers".[85]	Wallace	was	denied	the	possibility	of	further	amending	his	complaint,	and	was	ordered	to	pay	the	FSF's	legal	expenses.	On	8	September	2005,	the	Seoul	Central	District	Court	ruled	that	the	GPL	was	not	material	to	a	case	dealing	with	trade	secrets	derived	from	GPL-licensed	work.[86]	Defendants	argued	that	since	it	is
impossible	to	maintain	trade	secrets	while	being	compliant	with	GPL	and	distributing	the	work,	they	are	not	in	breach	of	trade	secrets.	This	argument	was	considered	without	ground.	On	6	September	2006,	the	gpl-violations.org	project	prevailed	in	court	litigation	against	D-Link	Germany	GmbH	regarding	D-Link's	copyright-infringing	use	of	parts	of
the	Linux	kernel	in	storage	devices	they	distributed.[87]	The	judgment	stated	that	the	GPL	is	valid,	legally	binding,	and	stands	in	a	German	court.[88]	In	late	2007,	BusyBox	developers	and	the	Software	Freedom	Law	Center	embarked	upon	a	program	to	gain	GPL	compliance	from	distributors	of	BusyBox	in	embedded	systems,	suing	those	who	would
not	comply.	These	were	claimed	to	be	the	first	US	uses	of	courts	for	enforcement	of	GPL	obligations.	(See	BusyBox	GPL	lawsuits.)	On	11	December	2008,	the	Free	Software	Foundation	sued	Cisco	Systems,	Inc.	for	copyright	violations	by	its	Linksys	division,	of	the	FSF's	GPL-licensed	coreutils,	readline,	Parted,	Wget,	GNU	Compiler	Collection,	binutils,
and	GNU	Debugger	software	packages,	which	Linksys	distributes	in	the	Linux	firmware[89]	of	its	WRT54G	wireless	routers,	as	well	as	numerous	other	devices	including	DSL	and	Cable	modems,	Network	Attached	Storage	devices,	Voice-Over-IP	gateways,	virtual	private	network	devices,	and	a	home	theater/media	player	device.[90]	After	six	years	of
repeated	complaints	to	Cisco	by	the	FSF,	claims	by	Cisco	that	they	would	correct,	or	were	correcting,	their	compliance	problems	(not	providing	complete	copies	of	all	source	code	and	their	modifications),	of	repeated	new	violations	being	discovered	and	reported	with	more	products,	and	lack	of	action	by	Linksys	(a	process	described	on	the	FSF	blog
as	a	"five-years-running	game	of	Whack-a-Mole"[90])	the	FSF	took	them	to	court.	Cisco	settled	the	case	six	months	later	by	agreeing	"to	appoint	a	Free	Software	Director	for	Linksys"	to	ensure	compliance,	"to	notify	previous	recipients	of	Linksys	products	containing	FSF	programs	of	their	rights	under	the	GPL,"	to	make	source	code	of	FSF	programs
freely	available	on	its	website,	and	to	make	a	monetary	contribution	to	the	FSF.[91]	In	2011,	it	was	noticed	that	GNU	Emacs	had	been	accidentally	releasing	some	binaries	without	corresponding	source	code	for	two	years,	contrary	to	the	intended	spirit	of	the	GPL,	resulting	in	a	copyright	violation.[92]	Richard	Stallman	described	this	incident	as	a
"very	bad	mistake",[93]	which	was	promptly	fixed.	The	FSF	did	not	sue	any	downstream	redistributors	who	also	unknowingly	violated	the	GPL	by	distributing	these	binaries.	In	2017	Artifex,	the	maker	of	Ghostscript,	sued	Hancom,	the	maker	of	an	office	suite	that	included	Ghostscript.	Artifex	offers	two	licenses	for	Ghostscript;	one	is	the	AGPL
License	and	the	other	is	a	commercial	license.	Hancom	did	not	acquire	a	commercial	license	from	Artifex	nor	did	it	release	its	office	suite	as	free	software.	Artifex	sued	Hancom	in	US	District	Court	and	made	two	claims.	First,	Hancom's	use	of	Ghostscript	was	a	violation	of	copyright;	and	second,	Hancom's	use	of	Ghostscript	was	a	license	violation.
The	court	found	the	GPL	license	was	an	enforceable	contract	and	Hancom	was	in	breach	of	contract.[94][95]	On	20	July	2021,	the	developers	of	the	open-source	Stockfish	chess	engine	sued	ChessBase,	a	creator	of	chess	software,	for	violating	the	GPLv3	license.[96]	It	was	claimed	that	Chessbase	had	made	only	slight	modifications	to	the	Stockfish
code	and	sold	the	new	engines	(Fat	Fritz	2	and	Houdini	6)	to	their	customers.[97]	Additionally,	Fat	Fritz	2	was	marketed	as	if	it	was	an	innovative	engine.	ChessBase	had	infringed	on	the	license	by	not	distributing	these	products	as	Free	Software	in	accordance	with	the	GPL.	A	year	later	on	7	November	2022,	the	parties	reached	an	agreement	and
ended	the	dispute.	In	the	near	future	ChessBase	will	no	longer	sell	products	containing	Stockfish	code,	while	informing	their	customers	of	this	fact	with	an	appropriate	notice	on	their	web	pages.	However,	one	year	later,	Chessbase's	license	would	be	reinstated.	Stockfish	did	not	seek	damages	or	financial	compensation.[98][99][100]	Quick	guide	of
license	compatibility	with	GPLv3	according	to	the	FSF.	Dashed	line	indicates	that	the	GPLv2	is	only	compatible	with	the	GPLv3	with	the	clause	"or	any	later	version".	Code	licensed	under	several	other	licenses	can	be	combined	with	a	program	under	the	GPL	without	conflict,	as	long	as	the	combination	of	restrictions	on	the	work	as	a	whole	does	not
put	any	additional	restrictions	beyond	what	GPL	allows.[101]	In	addition	to	the	regular	terms	of	the	GPL,	there	are	additional	restrictions	and	permissions	one	can	apply:	If	a	user	wants	to	combine	code	licensed	under	different	versions	of	GPL,	then	this	is	only	allowed	if	the	code	with	the	earlier	GPL	version	includes	an	"or	any	later	version"
statement.[102]	For	instance,	the	GPLv3-licensed	GNU	LibreDWG	library	cannot	be	used	by	LibreCAD	and	FreeCAD	who	have	GPLv2-only	dependencies.[103]	Code	licensed	under	LGPL	is	permitted	to	be	linked	with	any	other	code	no	matter	what	license	that	code	has,[104]	though	the	LGPL	does	add	additional	requirements	for	the	combined	work.
LGPLv3	and	GPLv2-only	can	thus	commonly	not	be	linked,	as	the	combined	Code	work	would	add	additional	LGPLv3	requirements	on	top	of	the	GPLv2-only	licensed	software.	Code	licensed	under	LGPLv2.x	without	the	"any	later	version"	statement	can	be	relicensed	if	the	whole	combined	work	is	licensed	to	GPLv2	or	GPLv3.[105]	FSF	maintains	a
list[106]	of	GPL-compatible	free	software	licenses[107]	containing	many	of	the	most	common	free	software	licenses,	such	as	the	original	MIT/X	license,	the	BSD	license	(in	its	current	3-clause	form),	and	the	Artistic	License	2.0.[108]	Starting	from	GPLv3,	it	is	unilaterally	compatible	for	materials	(like	text	and	other	media)	under	Creative	Commons
Attribution-ShareAlike	4.0	International	License	to	be	remixed	into	the	GPL-licensed	materials	(prominently	software),	not	vice	versa,	for	niche	use	cases	like	game	engine	(GPL)	with	game	scripts	(CC	BY-SA).[109][110]	David	A.	Wheeler	has	advocated	that	free/open	source	software	developers	use	only	GPL-compatible	licenses,	because	doing
otherwise	makes	it	difficult	for	others	to	participate	and	contribute	code.[111]	As	a	specific	example	of	license	incompatibility,	Sun	Microsystems'	ZFS	cannot	be	included	in	the	GPL-licensed	Linux	kernel,	because	it	is	licensed	under	the	GPL-incompatible	Common	Development	and	Distribution	License.	Furthermore,	ZFS	is	protected	by	patents,	so
distributing	an	independently	developed	GPL-ed	implementation	would	still	require	Oracle's	permission.[112]	A	number	of	businesses	use	multi-licensing	to	distribute	a	GPL	version	and	sell	a	proprietary	license	to	companies	wishing	to	combine	the	package	with	proprietary	code,	using	dynamic	linking	or	not.	Examples	of	such	companies	include
MySQL	AB,	Digia	PLC	(Qt	framework,	before	2011	from	Nokia),	Red	Hat	(Cygwin),	and	Riverbank	Computing	(PyQt).	Other	companies,	like	the	Mozilla	Foundation	(products	include	Mozilla	Application	Suite,	Mozilla	Thunderbird,	and	Mozilla	Firefox),	used	multi-licensing	to	distribute	versions	under	the	GPL	and	some	other	open-source	licenses.	It	is
possible	to	use	the	GPL	for	text	documents	(or	more	generally	for	all	kinds	of	media)	if	it	is	clear	what	constitutes	the	source	code	(defined	as	"the	preferred	form	of	the	work	for	making	changes	in	it").[113]	For	manuals	and	textbooks,	though,	the	FSF	recommends	the	GNU	Free	Documentation	License	(GFDL)	instead,	which	it	created	for	this
purpose.[114]	Nevertheless,	the	Debian	developers	recommended	(in	a	resolution	adopted	in	2006)	to	license	documentation	for	their	project	under	the	GPL,	because	of	the	incompatibility	of	the	GFDL	with	the	GPL	(text	licensed	under	the	GFDL	cannot	be	incorporated	into	GPL	software).[115][116]	Also,	the	FLOSS	Manuals	foundation,	an
organization	devoted	to	creating	manuals	for	free	software,	decided	to	eschew	the	GFDL	in	favor	of	the	GPL	for	its	texts	in	2007.[117]	If	the	GPL	is	used	for	computer	fonts,	any	documents	or	images	made	with	such	fonts	might	also	have	to	be	distributed	under	the	terms	of	the	GPL.	This	is	not	the	case	in	countries	that	recognize	typefaces	(the
appearance	of	fonts)	as	being	a	useful	article	and	thus	not	eligible	for	copyright,	but	font	files	as	copyrighted	computer	software	(which	can	complicate	font	embedding,	since	the	document	could	be	considered	'linked'	to	the	font;	in	other	words,	embedding	a	vector	font	in	a	document	could	force	it	to	be	released	under	the	GPL,	but	a	rasterized
rendering	of	the	font	would	not	be	subject	to	the	GPL).	The	FSF	provides	an	exception	for	cases	where	this	is	not	desired.[118]	Historically,	the	GPL	license	family	has	been	one	of	the	most	popular	software	licenses	in	the	FOSS	domain.[7][119][9][10][11][120]	A	1997	survey	of	MetaLab,	then	the	largest	free	software	archive,	showed	that	the	GPL
accounted	for	about	half	of	the	software	licensed	therein.[119]	Similarly,	a	2000	survey	of	Red	Hat	Linux	7.1	found	that	53%	of	the	source	code	was	licensed	under	the	GPL.[9]	As	of	2003[update],	about	68%	of	all	projects	and	82.1%	of	the	open	source	industry	certified	licensed	projects	listed	on	SourceForge.net	were	from	the	GPL	license	family.
[121]	As	of	August	2008[update],	the	GPL	family	accounted	for	70.9%	of	the	44,927	free	software	projects	listed	on	Freecode.[10]	After	the	release	of	the	GPLv3	in	June	2007,	adoption	of	this	new	GPL	version	was	much	discussed[122]	and	some	projects	decided	against	upgrading.	For	instance	the	Linux	kernel,[40][42]	MySQL,[123]	BusyBox,[124]
AdvFS,[125]	Blender,[126][127]	VLC	media	player,[128]	and	MediaWiki[129]	decided	against	adopting	GPLv3.	On	the	other	hand,	in	2009,	two	years	after	the	release	of	GPLv3,	Google	open-source	programs	office	manager	Chris	DiBona	reported	that	the	number	of	open-source	project	licensed	software	that	had	moved	from	GPLv2	to	GPLv3	was
50%,	counting	the	projects	hosted	at	Google	Code.[11]	In	2011,	four	years	after	the	release	of	the	GPLv3,	6.5%	of	all	open-source	license	projects	are	GPLv3	while	42.5%	are	GPLv2	according	to	Black	Duck	Software	data.[130][131]	Following	in	2011	451	Group	analyst	Matthew	Aslett	argued	in	a	blog	post	that	copyleft	licenses	went	into	decline	and
permissive	licenses	increased,	based	on	statistics	from	Black	Duck	Software.[132]	Similarly,	in	February	2012	Jon	Buys	reported	that	among	the	top	50	projects	on	GitHub	five	projects	were	under	a	GPL	license,	including	dual	licensed	and	AGPL	projects.[133]	GPL	usage	statistics	from	2009	to	2013	was	extracted	from	Freecode	data	by	Walter	van
Holst	while	analyzing	license	proliferation.[12]	Usage	of	GPL	family	licenses	in	%	on	Freecode[12]	2009	2010	2011	2012	2013	2014-06-18[134][135]	72%	63%	61%	59%	58%	approx.	54%	In	August	2013,	according	to	Black	Duck	Software,	the	website's	data	shows	that	the	GPL	license	family	is	used	by	54%	of	open-source	projects,	with	a	breakdown
of	the	individual	licenses	shown	in	the	following	table.[120]	However,	a	later	study	in	2013	showed	that	software	licensed	under	the	GPL	license	family	has	increased,	and	that	even	the	data	from	Black	Duck	Software	has	shown	a	total	increase	of	software	projects	licensed	under	GPL.	The	study	used	public	information	gathered	from	repositories	of
the	Debian	Project,	and	the	study	criticized	Black	Duck	Software	for	not	publishing	their	methodology	used	in	collecting	statistics.[136]	Daniel	German,	Professor	in	the	Department	of	Computer	Science	at	the	University	of	Victoria	in	Canada,	presented	a	talk	in	2013	about	the	methodological	challenges	in	determining	which	are	the	most	widely	used
free	software	licenses,	and	showed	how	he	could	not	replicate	the	result	from	Black	Duck	Software.[137]	In	2015,	according	to	Black	Duck,	GPLv2	lost	its	first	position	to	the	MIT	license	and	is	now	second,	the	GPLv3	dropped	to	fourth	place	while	the	Apache	license	kept	its	third	position.[7]	Usage	of	GPL	family	licenses	in	the	FOSS	domain	in	%
according	to	Black	Duck	Software	License	2008-05-08[138]	2009-03-11[139]	2011-11-22[130]	2013-08-12[120]	2015-11-19[7]	2016-06-06[140]	2017-01-02[141]	2018-06-04[142]	GPLv2	58.69%	52.2%	42.5%	33%	23%	21%	19%	14%	GPLv3	1.64%	4.15%	6.5%	12%	9%	9%	8%	6%	LGPLv2.1	11.39%	9.84%	?	6%	5%	4%	4%	3%	LGPLv3	?	(

