
	

https://benaxi.bebopim.com/483991332306974599817021383449866630154981?kozimakotumiwukonanubidazodetomudobuwinifexuronekanitiwekawopelofora=letabisepatarajatilerakobikovalodilokejijekonavesunugegebonopezavemisobiwupefukapabedanekevobiloxasekotofitisixuxatekebewegixaboromibebafoxurugutemedobumubogutomazuzomotadizogisojajebalebijerumumuporam&utm_kwd=bash+script+test+if+folder+exists+or+create+it&nezemagoruzebugunubirogoluwobavoxunobuxaweguvatepanisofulafefajanedagufixuro=dawuborexumusufelinaguxozomedorivamixexokeluvekoposuromoxumuzodozamazufevuseredapixulolifexojoralogefegukuseguxoliboj

Bash	script	test	if	folder	exists	or	create	it

In	Bash,	you	can	check	if	a	folder	exists	and	create	it	if	it	doesn't	using	the	following	script:	[!	-d	"your_folder"]	&&	mkdir	"your_folder"	Understanding	Directories	in	Bash	What	is	a	Directory?	A	directory	is	a	special	type	of	file	that	contains	references	to	other	files	or	directories.	In	Unix	and	Linux	file	systems,	directories	are	essential	for	organizing
and	storing	files	hierarchically,	allowing	users	to	navigate	and	manage	their	data	efficiently.	Why	Test	for	Directory	Existence?	Testing	for	directory	existence	is	crucial	for	several	reasons:	Preventing	Errors:	If	your	script	attempts	to	write	to	a	directory	that	doesn’t	exist,	it	may	encounter	runtime	errors.	By	checking	first,	you	can	avoid	this	situation.
Ensuring	Script	Efficiency:	Testing	for	a	directory	allows	your	script	to	run	smoothly	without	unnecessary	commands,	saving	time	and	system	resources.	Real-World	Scenarios:	For	example,	you	might	run	a	backup	script	that	needs	to	save	data	to	a	specific	folder.	If	that	folder	isn’t	present,	the	script	should	create	it	rather	than	fail	unexpectedly.
Bash	Convert	List	to	Associate	Array	Made	Simple	Basic	Syntax	for	Folder	Existence	Check	Using	the	`test`	Command	The	`test`	command	is	a	standard	command	used	to	evaluate	conditional	expressions	in	bash	scripts.	To	check	if	a	directory	exists,	you	can	use:	test	-d	"directory_name"	This	command	returns	true	(0)	if	the	directory	exists	and	false
(1)	if	it	does	not.	Alternative:	Using	`[[`	Command	Another	way	to	check	for	the	existence	of	a	directory	is	by	using	the	`[[`	command,	which	is	more	versatile	and	often	preferred	due	to	its	enhanced	syntax.	The	basic	usage	is:	[[-d	"directory_name"]]	This	command	works	similarly	to	`test	-d`,	but	it	can	be	more	efficient	when	combining	multiple
conditions.	Bash	Check	If	File	Exists:	A	Quick	Guide	Writing	the	Bash	Script	Setting	Up	the	Script	Before	diving	into	writing	the	actual	script,	start	by	creating	a	new	bash	script	file.	At	the	beginning	of	your	script,	include	the	shebang	line	to	tell	your	system	that	this	file	should	be	executed	using	bash:	#!	/bin/bash	Example	Code	Snippet	Checking	for
Directory	Existence	To	check	if	a	directory	exists,	you	can	use	the	following	simple	code	snippet:	if	[-d	"my_directory"];	then	echo	"Directory	exists."	else	echo	"Directory	does	not	exist."	fi	In	this	script:	The	conditional	statement	checks	if	"my_directory"	exists	using	`[-d	"my_directory"]`.	If	it	does,	it	prints	"Directory	exists."	If	not,	it	outputs
"Directory	does	not	exist."	Creating	the	Directory	If	It	Doesn’t	Exist	To	enhance	the	script	so	that	it	creates	the	directory	if	it	does	not	already	exist,	you	can	expand	it	as	follows:	if	[-d	"my_directory"];	then	echo	"Directory	exists."	else	mkdir	"my_directory"	echo	"Directory	created."	fi	In	this	snippet:	If	"my_directory"	does	not	exist,	`mkdir
"my_directory"`	creates	it.	The	script	then	informs	the	user	that	the	directory	has	been	created.	Bash	Script	Header	Essentials:	Structure	Your	Code	Right	Enhancements	and	Best	Practices	Using	Variables	for	Flexibility	For	better	adaptability	in	your	scripts,	it's	a	good	practice	to	use	variables.	This	way,	you	can	easily	change	the	directory	name
without	modifying	multiple	lines	of	code.	Here’s	how	you	can	implement	that:	dir_name="my_directory"	if	[-d	"$dir_name"];	then	echo	"Directory	exists."	else	mkdir	"$dir_name"	echo	"Directory	created."	fi	Adding	Error	Handling	Including	error	handling	improves	the	robustness	of	scripts.	For	instance,	after	attempting	to	create	a	directory,	you
might	want	to	ensure	it	was	successful	by	adding	a	check:	if	[-d	"$dir_name"];	then	echo	"Directory	exists."	else	mkdir	"$dir_name"	&&	echo	"Directory	created."	||	echo	"Failed	to	create	directory."	fi	In	this	example:	The	`&&`	operator	allows	the	script	to	print	"Directory	created."	only	if	the	creation	command	succeeds.	The	`||`	operator	is	used	to
display	an	error	message	if	the	directory	creation	fails.	Mastering	Bash	Script	Format	for	Quick	Command	Success	Common	Pitfalls	and	Solutions	Case	Sensitivity	One	common	issue	in	bash	scripting	is	case	sensitivity.	In	Linux,	"my_directory"	and	"My_Directory"	are	different.	Signs	of	this	could	lead	to	unexpected	behavior	in	scripts.	For	example:	if
[-d	"My_Directory"];	then	#	This	will	not	work	as	expected	if	the	directory	is	named	"my_directory"	Always	ensure	you	use	the	correct	case	when	checking	for	directories.	Hidden	Directories	In	Unix/Linux	systems,	directories	whose	names	begin	with	a	dot	(.)	are	considered	hidden.	If	you	want	to	check	for	a	hidden	directory's	existence,	ensure	you
include	the	dot	in	the	name.	Bash	Script	Beginner:	Your	Quick	Start	to	Shell	Mastery	Conclusion	In	this	guide,	we	explored	how	to	bash	script	test	if	folder	exists	or	create	it	through	various	methods.	Understanding	how	to	check	for	the	existence	of	directories	and	create	them	when	necessary	is	a	critical	skill	in	bash	scripting.	You’ve	learned	to	write
a	simple	script,	utilize	variables	for	flexibility,	and	add	error	handling	for	robust	operations.	Bash	Script	Options:	A	Quick	Guide	to	Mastering	Choices	Additional	Resources	Further	Reading	and	Learning	To	deepen	your	understanding	and	improve	your	bash	scripting	skills,	consider	exploring	additional	resources	like	online	tutorials,	coding	courses,
or	dedicated	bash	scripting	books.	Community	and	Support	Engage	with	communities	of	bash	scripting	learners	and	professionals.	Forums,	social	media	groups,	and	Q&A	sites	can	be	valuable	places	for	sharing	knowledge,	asking	questions,	and	collaborating	on	scripts.	Bash	Script	Template:	Your	Quick	Start	Guide	to	Scripting	Call	to	Action	Now	it’s
your	turn!	Experiment	with	the	examples	provided	and	try	writing	your	own	bash	scripts.	Share	your	experiences,	questions,	or	successful	scripts	with	the	community	and	continue	your	journey	in	mastering	bash	scripting!	To	check	if	a	directory	exists	or	not	in	Bash,	use	the	code	below:	if	[-d	/path/to/directory];	then	echo	"Directory	exists."	else	echo
"Directory	doesn't	exist."	fi	In	Bash	scripting,	checking	the	existence	of	a	directory	in	Bash	involves	evaluating	the	presence	of	a	directory	in	a	specified	path.	You	can	perform	various	test	operations	within	‘if’	conditional	statements	to	check	whether	a	directory	exists	or	not	in	Bash.	Moreover,	you	can	make	a	directory	by	using	the	“mkdir	-p”
command	when	it	doesn’t	exist	in	Bash.	In	this	article,	I	will	demonstrate	5	ways	to	check	if	a	directory	exists	in	Bash.	Practice	Files	to	Check	If	a	Directory	Exists	in	Bash	5	Ways	to	Check	If	a	Directory	Exists	in	Bash	To	check	if	a	directory	exists	in	Bash,	you	can	use	several	methods	such	as	using	“test”	command	or	“[]”	construct,	“[[]]”	construct,
“ls”	command,	“find”	command,	“-L”	operator	with	“-d”	operator.	You	can	also	check	if	multiple	directories	exist	by	using	the	loop	iteration	process	and	logical	operators	in	Bash.	1.	Using	“-d”	Option	The	“-d”	test	operator	in	Bash	is	used	to	check	if	a	directory	exists	in	the	defined	path.	If	the	specified	directory	exists,	it	returns	an	exit	status	of	zero
(0)	i.e.	a	true	expression.	Otherwise,	it	returns	a	non-zero	exit	status.	Here’s	an	example	to	verify	the	existence	of	a	directory	in	Bash	by	using	the	“-d”	construct:	#!/bin/bash	#Checking	if	the	directory	exists	if	[-d	/home/nadiba/var_dir];	then	#Providing	information	in	/path/to/directory	echo	"'var_dir'	directory	exists."	fi	The	‘if’	conditional	in	this
script,	checks	if	the	given	path	corresponds	to	an	existing	directory	or	not.	If	the	condition	is	satisfied,	it	returns	a	true	expression	and	the	script	displays	‘var_dir’	directory	exists.’.	Otherwise,	it	returns	nothing.	From	the	image,	you	can	see	that	the	directory	var_dir	exists	in	my	‘home’	directory.	2.	Using	“test”	Command	To	check	if	a	directory	exists
using	the	test	command	in	Bash,	you	can	use	the	-d	option	followed	by	the	directory	path.	Here’s	how	you	can	do	it:	#!/bin/bash	my_directory="/home/nadiba/template"	if	[[-d	"$my_directory"]];	then	echo	"The	directory	‘template’	exists."	fi	Here,	if	[[-d	"$my_directory"]];	checks	whether	the	path	corresponds	to	the	specific	directory	exists	or	not	in
user’s	system.	If	the	script	test	expression	finds	the	directory	it	returns	a	successful	exit	status.	In	this	image,	you	can	see	that	the	directory	template	exists	in	my	‘home’	directory.	3.	Using	the	“-L”	Operator	to	Check	Symlinks	to	a	Directory	The	“-L”	is	a	file	test	operator	in	Bash	that	checks	whether	a	specified	path	exists	and	is	a	symbolic	link
(symlink).	You	can	combine	this	“-L”	operator	with	the	“-d”	operator	to	verify	if	the	symlink	points	to	a	directory	or	any	file.	This	is	an	indirect	process	to	check	the	existence	of	a	directory	corresponding	to	symlinks.	Explore	the	script	below	to	check	the	existence	of	a	directory	in	Bash	using	“-L”	operator:	#!/bin/bash	#Checking	if	the	symlink	'xyz'
points	to	a	directory	if	[[-L	"xyz"	&&	-d	"xyz"]];	then	echo	"The	symlink	'xyz'	points	to	a	directory."	fi	In	this	script,	the	‘if’	conditional	checks	if	‘xyz’	is	both	a	symbolic	link	and	directory	using	the	&&	operator.	If	both	conditions	are	satisfied,	then	the	script	returns	a	true	expression	and		displays	an	output	message.	But	if	any	of	these	conditions	is
false,	the	script	returns	nothing.	From	the	above	image,	you	can	see	that	xyz	is	a	symbolic	link	and	it	points	to	a	directory	as	well.	4.	Using	“ls”	Command	The	“ls”	command	in	Bash	does	not	check	the	existence	of	a	directory	directly.	It	is	mainly	used	to	list	the	contents	of	a	directory.	However,	it	can	be	used	along	with	the	‘if’	conditional	statements
to	indirectly	check	the	existence	of	the	directories	in	Bash.	Go	through	the	following	script	to	verify	the	existence	of	a	directory	in	Bash	by	using	the	“ls”	command:	#!/bin/bash	if	ls	"/home/nadiba/Desktop/linuxsimply"	>/dev/null	2>&1;	then	#Providing	information	in	/path/to/directory	echo	"The	directory	exists."	fi	In	the	script,	the	conditional
expression	checks	if	the	ls	command	lists	all	the	contents	of	the	directory	linuxsimply	inside	‘/home/nadiba/Desktop’	where	the	output	(stdout)	is	redirected	to	/dev/null.	In	addition,	2>&1	redirects	the	error	output	(stderr)	to	the	same	place	as	the	standard	output.	However,	the	combination	>/dev/null	2>&1	is	used	to	suppress	both	output	and	error
messages	that	the	“ls”	command	generates.	Finally,	if	the	“ls”	command	succeeds,	the	conditional	expression	evaluates	to	true	and	executes	‘The	directory	exists.’.	In	the	image,	the	directory	linuxsimply	exists	in	the	‘Desktop’	directory	of	my	system.	5.	Using	“find”	Command	The	“find”	command	in	Bash	is	used	to	search	for	files	and	directories
within	a	specified	directory	hierarchy	based	on	various	criteria.	It’s	highly	flexible	when	checking	a	directory	that	matches	a	particular	pattern.	To	check	if	a	directory	exists	in	Bash	using	“find”	command,	you	can	follow	the	below	script:	#!/bin/bash	directory_path="/home/nadiba/Documents/ubuntu"	#Providing	information	in	/path/to/directory	if	find
"$directory_path"	-type	d	-print	-quit	|	grep	-q	.;	then	echo	"The	directory	'ubuntu'	exists."	fi	First,	the	find	command	within	the	‘if’	statement	searches	for	the	directories	within	the	specified	path	where	the	-print	-quit	helps	the	“find”	command	to	print	the	first	directory	found	in	the	path	and	then	quit	the	search.	Then,	the	output	of	the	“find”
command	is	redirected	to	the	grep	command	and	the	-q	flag	with	the	“grep”	command	only	sets	the	exit	status	for	the	match	where	‘.’	indicates	the	pattern	being	searched	for.	If	the	condition	is	true,	it	displays	a	successful	output.	In	the	snapshot	above	you	can	see	that	the	directory	ubuntu	exists	in	the	‘Documents’	directory	of	my	system.	How	to
Check	If	Multiple	Directories	Exist	in	Bash?	When	you	have	several	directories	and	you	want	to	verify	the	existence	of	each	one,	then	Bash	helps	you	to	accomplish	the	task	using	a	loop.	You	can	use	the	for	loop	with	‘if’	statement	to	iterate	through	all	the	directory	paths	and	perform	the	conditional	test.	Navigate	through	the	script	below	to	check	if
multiple	directories	exist	in	Bash:	#!/bin/bash	#Defining	directory	paths	with	an	array	multi_directories=("/home/nadiba/Pictures"	"/home/nadiba/Documents"	"/home/nadiba/Downloads")	#Looping	through	each	directory	path	to	check	the	existence	for	directory	in	"${multi_directories[@]}";	do	if	[[-d	"$directory"]];	then	echo	"Directory	'$directory'
exists."	fi	done	Here,	the	for	loop	iterates	through	each	directory	in	the	multi_directories	array	and	inside	the	loop,	the	‘if’	conditional	statement	evaluates	whether	the	current	directory	specified	by	$directory	exists.	If	the	directory	exists,	the	script	executes	a	true	expression	by	printing	each	output	message	for	each	directory.	In	the	image,	all	the
directories	Pictures,	Documents	and	Downloads	exist	in	the	‘home’	directory	of	my	system.	How	to	Check	If	a	Directory	Doesn’t	Exist	in	Bash?	If	you	want	to	check	if	a	directory	does	not	exist,	use	the	NOT	(!)	operator	and	negate	the	conditional	expressions	i.e.	it	inverts	the	output	expression	of	the	conditional	statements.	Check	out	the	script	below
to	verify	if	a	directory	doesn’t	exist	in	Bash:	#!/bin/bash	directory_path=/home/music	if	[!	-d	"$directory_path"];	then	echo	"The	directory	'music'	does	not	exist."	fi	Here,	if	[!	-d	"$directory_path"];	checks	whether	the	directory	‘music’	does	not	exist	in	the	specified	path.	If	the	directory	doesn’t	exist,	the	script	returns	a	true	expression.	But	if	the
directory	exists,	it	returns	nothing.	You	can	see	from	the	image	that	there	is	no	directory	named	music	in	my	‘home’	directory.	How	to	Create	a	Directory	If	It	Doesn’t	Exist	in	Linux?	To	create	a	directory	if	it	doesn’t	exist	in	Linux,	use	mkdir	command	with	-p	option.	The	“-p”	option	along	with	mkdir	command,	it	allows	you	to	create	a	directory	if	it
doesn’t	exist	and	the	necessary	parent	directories	if	required.	Here’s	how	you	can	make	a	directory	if	it	doesn’t	exist	in	Bash:	#!/bin/bash	directory_path="/home/nadiba/Documents/music"	if	[!	-d	"$directory_path"];	then	mkdir	-p	"$directory_path"	echo	"The	directory	is	created."	fi	Here,	the	conditional	expression	if	[!	-d	"$directory_path"]	checks
whether	the	directory	‘music’	exists	in	the	specified	path.	If	the	directory	doesn’t	exist,	the	script	returns	a	true	expression	and	makes	that	specific	directory	in	the	defined	path.	As	you	can	see	from	the	image,	the	directory	music	has	been	created	inside	‘/home/nadiba/Documents’,	which	did	not	exist	previously.	Conclusion	So	far,	you	have	learned
several	ways	to	check	the	existence	of	a	directory	in	Bash	scripting.	You	are	now	free	to	choose	any	method	that	suits	you	best	and	ensure	reliable	operations	and	efficient	error	handling.	People	Also	Ask	How	can	I	check	if	a	directory	exists	in	Bash?	To	check	if	a	directory	exists,	use	the	test	command	in	Bash,	you	can	use	the	-d	option	followed	by	the
directory	path.	Here’s	how	you	can	do	it:	if	test	-d	"/path/to/directory";	then	echo	"Directory	exists."	else	echo	"Directory	does	not	exist."	fi	Replace	“/path/to/directory”	with	the	actual	path	to	the	directory	you	want	to	check.	If	the	directory	exists,	the	script	will	print	“Directory	exists.”;	otherwise,	it	will	print	“Directory	does	not	exist.”.	Is	it	necessary
to	check	directory	existence	before	performing	actions	in	a	script?	Yes,	it	is	necessary	to	check	directory	existence	before	performing	actions	in	a	script.	Otherwise,	you	might	encounter	potential	errors	within	Bash	scripts.	Is	there	a	risk	of	false	positives	or	false	negatives	when	checking	directory	existence?	Yes,	there	are	risks	of	false	positives	or
false	negatives	when	checking	directory	existence	in	Bash	such	as	permission	issues,	concurrency	issues,	symlink	issues,	etc.	Elaborately	saying,	False	positive	occurs	when	the	script	reports	the	existence	of	a	directory,	but,	the	directory	does	not	exist	or	is	not	accessible	due	to	incorrect	permissions,	symbolic	links	issues,	etc.	False	negative	occurs
when	the	script	reports	that	a	directory	does	not	exist,	but	it	exists	in	the	script	due	to	permission	conflicts,	misleading	path	issues,	etc.	What	is	symlink	in	Linux	directory?	A	symlink	(Symbolic	link)	in	Linux	directory	is	the	reference	that	provides	a	way	to	create	shortcuts	to	files	or	directories	in	a	file	system	in	Bash.	Generally,	you	cannot	perform
operations	for	symlinks	like	regular	directories	as	they	are	different	from	regular	files	and	directories.	How	do	I	handle	edge	cases	like	spaces	or	special	characters	in	directory	names?	You	can	handle	edge	cases	like	spaces	or	special	characters	in	directory	names	by	following	some	best	practices	such	as	Quoting	variables	with	double	quotes	to
prevent	word	splitting	and	globbing.	Escaping	when	dealing	with	directory	names	with	special	characters.	Using	arrays	when	dealing	with	multiple	directories.	Can	directory	existence	checks	be	nested	within	conditional	statements	in	Bash?	Yes,	directory	existence	checks	can	be	nested	within	conditional	statements	in	Bash.	For	example:	#!/bin/bash
directory="/path/to/directory_name"	subdirectory="sub_directory"	#Checking	if	the	directory	exists	if	[-d	"$directory"];	then	echo	"The	directory	'$directory'	exists."	#Checking	if	the	subdirectory	within	the	main	directory	exists	if	[-d	"$directory/$subdirectory"];	then	echo	"The	subdirectory	'$subdirectory'	exists	within	'$directory'."	else	echo	"The
subdirectory	'$subdirectory'	does	not	exist	within	'$directory'."	fi	else	echo	"The	directory	'$directory'	does	not	exist."	fi	Related	Articles

