
	

https://dagetifu.gonujovux.com/463260612949164165103182850258603437182768?rafupoluzewelabizodumesagitawexitavaxalasefodozisodikolekovusopikigudozuposirit=tumesidizorevibafadegadanadukatigakobugejegawetobogedujifosusavegebewosulufilazopabuvufebodedupijazobumagomigikiwogadibuxazuzuvulorozelunigavufefonatapopofodabajexomipugolediwelatawukovapebizikumezuwudezuso&utm_kwd=what+is+ic_launcher+in+android&retininajaboperefumipaxukenusedexinatipunalexapujibo=rekuranarotilugenanaweradipakajifirekafalulukaxikazinamitilemixegixifezuranosovivatusiwemefurugerezotifodimumulojov

Circle	to	Search	now	recognizes	contact	details	and	links	on	your	screen,	and	prompts	you	to	act	on	them	in	the	moment.	Simply	tap	the	chip	to	start	a	call,	draft	an	email,	or	open	a	link	without	needing	to	copy	and	paste	information	into	a	new	app.	Action	chips	appear	when	a	single	phone	number,	email	address,	or	URL	is	detected.	Available	on
select	devices.	Internet	connection	required.	Works	on	compatible	apps	and	surfaces.	Results	may	vary	depending	on	visual	matches.	As	per	android	official	documentation:	An	adaptive	icon	can	display	differently	depending	on	individual	device	capabilities	and	user	theming.	Adaptive	icons	are	primarily	used	by	the	launcher	on	the	home	screen,	but
they	can	also	be	used	in	shortcuts,	the	Settings	app,	sharing	dialogs,	and	the	overview	screen.	In	this	short	article,	you	can	see	a	way	to	create	and	use	adaptive	icons	using	png	or	webp	images,	this	also	can	be	done	using	svg	files,	remember	that	for	svg	files	you	have	to	use	a	dedicated	tool	for	designing	the	images.	Finding	the	images	You	can	use
images	from	the	internet	for	making	the	launcher	icon	for	your	android	apps,	in	most	cases,	you	can	grab	one	from	a	external	site,	but,	when	using	the	file	you	must	credit	to	its	author.	The	images	we'll	be	using	are	found	in	the	Flaticon	website,	i	like	swimming,	so	the	icons	choosen.	Flaticon	is	the	largest	free	database	of	editable	icons	with	over	7
million	resources	available.	Themed	icons	With	Android	13	(API	level	33)	or	above,	users	can	theme	their	adaptive	icons,	the	feature	can	be	enabled	via	device	system	settings.	For	the	exercise,	i	selected	the	icons	provided	for	the	normal	launcher	icon	and	the	themed	icon.	The	icons	used	has	to	have	equal	size	(512px	in	this	case),	both	the	launcher
and	the	themed/monochrome	icon	has	to	be	with	transparent	background.	Add	adaptive	icons	in	android	studio	In	this	section,	we	go	to	android	studio,	we	can	choose	to	create	a	new	project	or	use	an	existing	one,	just	keep	in	mind	that	if	the	following	actions	are	applied,	it	is	recommended	to	keep	in	mind	that	when	creating	the	adaptive	icons	they
replace	the	existing	icons	(it	is	assumed	there	is	version	control	applied	in	these	cases).	Once	in	the	IDE,	check	the	res	folder,	right-click	on	it	and	select	the	option	New	>	Image	asset.	Once	the	image	asset	configuration	dialog	appears,	we	can	select	the	image	for	the	icon	in	the	foreground	layer	tab,	for	this	part	we	select	the	monochrome	icon	that
we	chose	earlier,	also,	we	set	the	scaling	for	the	icon	to	be	trimmed	and	to	have	a	zoom	of	60%.	Later,	in	the	background	layer	tab,	we	select	the	source	asset	type	to	color,	and	set	the	color	using	the	hex	color	#FFFBFE,	additional	settings	remain	as	the	default	in	the	dialog.	After	configured	the	icon,	we	do	click	Next,	for	reviewing	the	icon	files	to	be
generated.	In	this	screen,	we	can	see	that	the	images	are	stored	in	the	mipmap	folders	for	each	available	app	density,	also,	the	images	generated	using	the	filenames	ic_launcher.xml,	ic_launcher_round.webp	and	ic_launcher_foreground.webp.	At	this	point,	we	are	going	to	use	the	ic_launcher_foreground.webp	files,	because	those	icons	represent	the
monochrome	foreground	layer	for	the	themed	icon.	The	following	step	is	to	rename	the	ic_launcher_foreground.webp	files	to	ic_launcher_monochrome.webp.	for	this,	we	can	use	the	menu	Refactor	>	Rename	(Mayus	+	F6)	option.	After	renamimg,	the	files	are	shown	like	this:	Now,	we	repeat	the	steps	for	adding	a	launcher	icon,	this	time,	adding	the
normal	icon	we	choosed.	As	result,	we	have	both	the	monochrome	and	the	colored	foreground	layer	for	the	adaptive	icon.	Now,	check	the	results	for	the	adaptive	icon	display	Now	that	we	have	ready	the	launcher	icon	using	the	normal	colored	image	we	used,	this	time	we	check	the	launcher.xml	files,	which	contains	the	setting	for	the	foreground
layer	and	the	background	layer	for	the	adaptive	icon.	In	the	exercise,	we	made	both	the	not-round	and	the	round	launcher	icon	based	on	the	configuration	we	used	before	for	creating	the	launcher	icons,	so,	we	check	both	xml	files:	{root	project	folder}/app/src/main/res/mipmap-anydpi-v26	res/mipmap-anydpi-v26/	ic_launcher.xml
ic_launcher_round.xml	Both	files	have	the	following	xml	content	for	the	adaptive	icon	configuration,	in	which	is	used	the	element	to	define	the	foreground,	background,	and	monochromatic	layer	drawables	for	the	icons:	With	that,	the	themed	adaptive	icon	is	configured.	Now,	let's	check	the	result	visually,	for	that,	open	the	ic_launcher.xml	file	and
ensure	to	have	clicked	the	split	option	for	viewing	both	the	code	and	the	design	result.	In	the	upper	right	side	of	the	split	view,	we	can	see	the	icon	with	a	representation	for	dark/night	mode,	when	we	click	that	option,	we	can	see	the	options	for	selecting	the	theme	mode	(night/not-night)	and	the	dynamic	color	theme.	At	this	point,	we	can	change	the
mode	and	the	dynamic	color	for	display	the	themed	icon	variant.	Preview	in	devices	After	creating	the	launcher	icon	and	the	themed	/	monochrome	variant,	we	can	test	the	icon	displayed	in	the	device	or	the	emulator,	for	that,	just	build	and	test	the	android	app,	for	the	device,	try	to	use	a	device/emulator	using	android	version	13	or	above.	From	left	to
right:	Displayed	normal	launcher	icon	in	the	home	screen	Wallpaper	and	style	system	configuration,	here,	select	themed	icons	Displayed	themed	launcher	icon	in	the	home	screen	With	this	exercise	it	was	possible	to	perform	a	manual	configuration	of	the	launcher	icon	for	an	Android	application	using	the	adaptive	icon	concept.	Although	it	can	also	be
done	using	SVG	files,	as	recommended	by	Google's	Android	developers,	in	cases	where	you	have	png	image	files,	this	way	can	be	very	useful	when	creating	these	launcher	icons.	Adaptive	icons	not	only	apply	to	launchers,	they	can	also	be	applied	to	notification	icons	and	shortcut	icons,	but	the	content	of	this	article	covers	launcher	icons.	...	Thank	you
for	taking	the	time	to	read	my	article,	it	has	been	a	while	since	I	last	wrote	any	long	text	in	these	parts.	If	you	find	something	isn't	quite	right	or	have	other	information	to	add,	feel	free	to	add	a	respectful	comment.	If	you	like	this	article,	please	click	the	clap	icon	or	share	it	on	social	media	(or	both).	I	Hope	that	you	find	this	informative	and	useful	and
in	some	time	you	can	use	these	steps	in	your	android	apps.	Thanks	for	reading,	Happy	coding!!	 	...	Use	launcher	adaptive	icons,	Official	Android	documentation	tools	to	create	icons	for	Android	applications.	I	use	this	very	simple	tool	Do	you	follow	site's	instructions	or	Erel's,	in	order	to	be	compatible	at	b4a?	'This	code	will	be	applied	to	the	manifest
file	during	compilation.	'You	do	not	need	to	modify	it	in	most	cases.	'See	this	link	for	for	more	information:	AddManifestText()	'SetApplicationAttribute(android:icon,	"@drawable/icon")	SetApplicationAttribute(android:label,	"$LABEL$")	CreateResourceFromFile(Macro,	Themes.LightTheme)	'End	of	default	text.	SetApplicationAttribute(android:icon,
"@mipmap/ic_launcher")	SetApplicationAttribute(android:roundIcon,	"@mipmap/ic_launcher_round")	CreateResource(mipmap-anydpi-v26,	ic_launcher.xml,)	No	need	to	set	any	file	to	be	read-only.	Example:	Hello	After	this	method,	do	we	have	to	put	the	main	icon	of	the	"==>Objects\res\drawable"	and	set	file	to	be	read-only.	Or	it	is	no	longer
necessary?	thankyou	does	this	also	applies	to	the	notification	icons	also?	currently	I	use	this	code	Dim	n	As	Notification	n.Initialize	'put	file	in	res\drawable	and	set	read-only	n.Icon	=	"notification"	can	I	move	the	notification.png	file	to	the	icon	folder,	with	no	read-only	attribute?	All	app	should	have	an	adaptive	icon.	If	you	are	not	familiar	with	these
icons	then	start	here:	Adaptive	Icons	Instruction	steps:	Create	a	new	folder	in	the	root	project	folder	named	icon.	Create	two	folders	inside	that	folder	with	the	following	files:	mipmap:	ic_launcher.png	-	non-adaptive	icon	for	Android	7-	devices.	There	is	no	specific	size.	Should	be	128x128	or	or	more.	background.png	-	108x108	-	the	solid	background
layer.	foreground.png	-	108x108	-	the	foreground	layer.	mipmap-xxxhdpi	(high	resolution	images):	background.png	-	432x432	-	solid	background	layer	foreground.png	-	432x432	-	foreground	layer	Add	to	main	module:	Add	to	manifest	editor:	SetApplicationAttribute(android:icon,	"@mipmap/ic_launcher")	CreateResource(mipmap-anydpi-v26,
ic_launcher.xml,)	No	need	to	set	any	file	to	be	read-only.	Example:	I	missed	this:	And	couldn't	figure	out	where	it	was	getting	the	icons	Finally	figured	out	it	was	using	the	ones	in	Objects\res\mipmap	and	Objects\res\mipmap-anydpi-v26	What	do	we	do	with	these	files?	Page	2	I	will	wait	for	this	resource	to	be	added	to	Basic4Android	because	I	tryed	a
lot	but	my	program	crash,	so	I	ended	up	with	simple	"Choose	Icon"	on	the	menu	that	works	fine.	1.-	Download.	2.	Unzip	and	find	the	android	directory.	3.	Add	the	resource	directory	where	the	icons	are	in	your	project.	Note:	rename	android	directory	to	icon	4.	Add	the	directory	where	the	icons	are	to	your	project.	4.	Add	the	following	to	the	manifest.
SetApplicationAttribute(android:icon,	"@mipmap/ic_launcher")	SetApplicationAttribute(android:roundIcon,	"@mipmap/ic_launcher_round")	CreateResource(mipmap-anydpi-v26,	ic_launcher.xml,)	And	here	is	the	result,	the	icon	which	is	not	in	the	right	dimension.	Where	is	the	problem	please?	Merci	hello	Unable	to	get	the	icon	with	correct	size.	I
create	an	icon	directory	in	which	2	subdirectories	mipmap	and	mipmap-xxxhdpi.	View	attachment	152308	View	attachment	152309View	attachment	152310	I	write	in	the	Main:	#SupportedOrientations:	portrait	#CanInstallToExternalStorage:	False	#AdditionalRes:	../icon	And	in	the	manifest	:	SetApplicationAttribute(android:icon,
"@mipmap/ic_launcher")	CreateResource(mipmap-anydpi-v26,	ic_launcher.xml,	Notice	how	the	element	is	used	to	declare	the	and	layers	of	the	app	icon	by	providing	resource	drawables	for	each.	Go	back	to	the	Project	view	and	locate	the	background	and	foreground	drawables:	res	>	drawable	>	ic_launcher_background.xml	and	res	>	drawable	>
ic_launcher_foreground.xml.	Switch	to	Design	view	to	see	a	preview	of	each:	Background:	Foreground:	These	are	both	vector	drawable	files.	They	don't	have	a	fixed	size	in	pixels.	If	you	switch	to	Code	view,	you	can	see	the	XML	declaration	for	the	vector	drawable	using	the	element.	ic_launcher_foreground.xml	While	a	vector	drawable	and	a	bitmap
image	both	describe	a	graphic,	there	are	important	differences.	A	bitmap	image	doesn't	understand	much	about	the	image	that	it	holds,	except	for	the	color	information	at	each	pixel.	On	the	other	hand,	a	vector	graphic	knows	how	to	draw	the	shapes	that	define	an	image.	These	instructions	are	composed	of	a	set	of	points,	lines,	and	curves	along	with
color	information.	The	advantage	is	that	a	vector	graphic	can	be	scaled	for	any	canvas	size,	for	any	screen	density,	without	losing	quality.	A	vector	drawable	is	Android's	implementation	of	vector	graphics,	intended	to	be	flexible	on	mobile	devices.	You	can	define	them	in	XML	with	these	possible	elements.	Instead	of	providing	versions	of	a	bitmap
asset	for	all	density	buckets,	you	only	need	to	define	the	image	once.	Thus,	reducing	the	size	of	your	app	and	making	it	easier	to	maintain.	Note:	There	are	tradeoffs	to	using	a	vector	drawable	versus	a	bitmap	image.	For	example,	icons	can	be	ideal	as	vector	drawables	because	they	are	made	up	of	simple	shapes,	while	a	photograph	would	be	harder	to
describe	as	a	series	of	shapes.	It	would	be	more	efficient	to	use	a	bitmap	asset	in	that	case.	Now	it's	time	to	move	on	to	actually	changing	the	app	icon!	Download	the	following	two	new	assets	that	enable	you	to	create	an	adaptive	icon	for	the	Affirmations	app.	You	don't	need	to	worry	about	understanding	every	detail	of	the	vector	drawable	files.	Their
contents	are	auto-generated	for	you	from	design	tools.	Download	ic_launcher_background.xml,	which	is	the	vector	drawable	for	the	background	layer.	If	your	browser	shows	the	file	instead	of	downloading	it,	select	File	>	Save	Page	As...	to	save	it	to	your	computer.	Download	ic_launcher_foreground.xml,	which	is	the	vector	drawable	for	the
foreground	layer.	Note	that	there	are	certain	requirements	for	these	foreground	and	background	layer	assets,	such	as	both	must	be	108	dpi	x	108	dpi	in	size.	You	can	view	more	details	in	the	AdaptiveIconDrawable	docs	and	you	can	also	view	design	guidance	on	Android	icons	on	the	Material	Design	site.	Because	the	edges	of	your	icon	could	get
clipped,	depending	on	the	shape	of	the	mask	from	the	device	manufacturer,	it's	important	to	put	the	key	information	about	your	icon	in	the	"	safe	zone."	The	safe	zone	is	a	circle	of	diameter	66	dpi	in	the	center	of	the	foreground	layer.	The	content	outside	of	the	safe	zone	should	not	be	essential,	such	as	the	background	color,	and	okay	if	it	gets	clipped.
Go	back	to	Android	Studio	to	use	the	new	assets	you	just	downloaded.	First,	delete	the	old	drawable	resources	that	contain	the	Android	icon	and	green	grid	background.	In	the	Project	view,	right-click	on	the	file	and	choose	Delete.	Delete:	drawable/ic_launcher_background.xml	drawable/ic_launcher_foreground.xml	Delete:	mipmap-anydpi-v26/
mipmap-hdpi/	mipmap-mdpi/	mipmap-xhdpi/	mipmap-xxhdpi/	mipmap-xxxhdpi/	You	can	uncheck	the	box	Safe	delete	(with	usage	search)	and	click	OK.	The	Safe	delete	(with	usage	search)	feature	searches	the	code	for	usages	of	the	resource	you	are	about	to	delete.	In	this	case,	you	will	replace	these	folders	with	new	ones	of	the	same	name,	so	you
don't	need	to	worry	about	Safe	delete.	Create	a	new	Image	Asset.	You	can	either	right-click	on	the	res	directory	and	choose	New	>	Image	Asset,	or	you	can	click	on	the	Resource	Manager	tab,	click	the	+	icon,	then	select	Image	Asset	from	the	dropdown.	Android	Studio's	Image	Asset	Studio	tool	opens.	Leave	the	default	settings:	Icon	Type:	Launcher
Icons	(Adaptive	and	Legacy)	Name:	ic_launcher	With	the	Foreground	Layer	tab	already	selected,	go	to	the	Source	Asset	subsection.	In	the	Path	field,	click	the	folder	icon.	A	prompt	pops	up	to	browse	your	computer	and	select	a	file.	Find	the	location	of	the	new	ic_launcher_foreground.xml	file	you	just	downloaded.	It	may	be	in	the	Downloads	folder	of
your	computer.	Once	you	find	it,	click	Open.	The	Path	is	now	updated	with	the	location	of	the	new	foreground	vector	drawable.	Leave	Layer	Name	as	ic_launcher_foreground	and	Asset	Type	as	Image.	Next,	switch	to	the	Background	Layer	tab	of	the	interface.	Leave	the	default	values.	Click	the	folder	icon	in	the	Path	field.	Find	the	location	of	the
ic_launcher_background.xml	file	you	just	downloaded.	Click	Open.	The	preview	should	update	as	you	select	the	new	resource	files.	This	is	what	it	should	look	like	with	the	new	foreground	and	background	layers.	By	representing	your	app	icon	in	two	layers,	device	manufacturers—called	original	equipment	manufacturers	or	OEMs	for	short—can	create
different	shapes,	depending	on	the	Android	device,	as	shown	in	the	preview	above.	The	OEM	provides	a	mask	that	gets	applied	to	all	app	icons	on	the	device.	When	a	circular	mask	is	applied	to	both	layers	of	your	app	icon,	the	result	is	a	circular	icon	with	an	Android	image	and	a	blue	grid	background	(left	image	above).	Alternatively,	a	rounded	square
mask	could	be	applied	to	produce	the	app	icon	in	the	above	right.	Having	both	a	foreground	and	a	background	layer	allows	for	interesting	visual	effects	because	the	two	layers	can	move	independently	of	one	another,	and	be	scaled.	For	some	fun	examples	of	how	the	visual	effects	can	look,	view	the	Designing	Adaptive	Icons	blogpost	under	Design
Considerations.	Because	you	don't	know	what	device	your	user	will	have	or	what	mask	the	OEM	will	apply	to	your	icon,	you	need	to	set	up	your	adaptive	icon	so	important	information	doesn't	get	clipped.	If	important	content	is	clipped	or	appears	too	small,	then	you	can	use	the	Resize	slider	bar	under	the	Scaling	section	of	each	layer	to	make	sure
everything	appears	in	the	safe	zone.	To	ensure	nothing	is	clipped,	resize	the	foreground	and	background	images	to	99%	by	dragging	the	Resize	slider	in	the	Foreground	Layer	and	Background	Layer	tabs.	Click	Next.	This	step	is	to	Confirm	Icon	Path.	You	can	click	the	individual	files	to	see	the	preview.	Click	Finish.	Verify	all	the	generated	assets	look
correct	in	the	mipmap	folders.	Examples:	Great	work!	Now	you'll	make	one	more	change.	Test	your	app	Test	that	your	new	app	icon	appears.	Run	the	app	on	your	device	(emulator	or	physical	device).	Hit	the	Home	button	on	your	device.	Swipe	up	to	show	the	All	Apps	list.	Look	for	the	app	you	just	updated.	You	should	see	the	new	app	icon	displayed.
Note:	Depending	on	your	device	model,	you	may	see	a	launcher	icon	of	a	different	shape.	Nevertheless,	it	should	show	your	foreground	layer	on	top	of	your	background	layer	with	some	type	of	mask	applied	to	it.	Nice	job!	The	new	app	icon	looks	great.	Adaptive	and	legacy	launcher	icons	Now	that	your	adaptive	icon	works	well,	you	may	wonder	why
you	can't	get	rid	of	all	the	app	icon	bitmap	images.	You	still	need	those	files	so	that	your	app	icon	appears	high-quality	on	older	versions	of	Android,	which	is	referred	to	as	backwards	compatibility.	For	devices	running	Android	8.0	or	higher	(API	version	26	and	above),	Adaptive	icons	can	be	used	(combination	of	foreground	vector	drawable,
background	vector	drawable,	with	an	OEM	mask	applied	on	top	of	it).	These	are	the	relevant	files	in	your	project:	res/drawable/ic_launcher_background.xml	res/drawable/ic_launcher_foreground.xml	res/mipmap-anydpi-v26/ic_launcher.xml	res/mipmap-anydpi-v26/ic_launcher_round.xml	On	devices	running	anything	below	Android	8.0	(but	above	the
minimum	required	API	level	of	your	app),	Legacy	launcher	icons	are	used	(the	bitmap	images	in	the	mipmap	folders	of	different	density	buckets).	These	are	the	relevant	files	in	your	project:	res/mipmap-mdpi/ic_launcher.webp	res/mipmap-mdpi/ic_launcher_round.webp	res/mipmap-hdpi/ic_launcher.webp	res/mipmap-hdpi/ic_launcher_round.webp
res/mipmap-xhdpi/ic_launcher.png	res/mipmap-xhdpi/ic_launcher_round.webp	res/mipmap-xxhdpi/ic_launcher.webp	res/mipmap-xxhdpi/ic_launcher_round.webp	res/mipmap-xxxhdpi/ic_launcher.webp	res/mipmap-xxxhdpi/ic_launcher_round.webp	Essentially,	Android	falls	back	to	the	bitmap	images	on	older	devices	without	adaptive	icon	support.
Congratulations,	you	completed	all	the	steps	for	changing	an	app	icon!	To	download	the	code	for	the	finished	codelab,	you	can	use	these	git	commands:	$	git	clone	$	cd	basic-android-kotlin-compose-training-affirmations	$	git	checkout	main	Alternatively,	you	can	download	the	repository	as	a	zip	file,	unzip	it,	and	open	it	in	Android	Studio.
file_downloadDownload	zip	Note:	The	solution	code	is	in	the	main	branch	of	the	downloaded	repository.	If	you	want	to	see	the	solution	code,	view	it	on	GitHub.	Navigate	to	the	provided	GitHub	repository	page	for	the	project.	Verify	that	the	branch	name	matches	the	branch	name	specified	in	the	codelab.	For	example,	in	the	following	screenshot	the
branch	name	is	main.	On	the	GitHub	page	for	the	project,	click	the	Code	button,	which	brings	up	a	popup.	In	the	popup,	click	the	Download	ZIP	button	to	save	the	project	to	your	computer.	Wait	for	the	download	to	complete.	Locate	the	file	on	your	computer	(likely	in	the	Downloads	folder).	Double-click	the	ZIP	file	to	unpack	it.	This	creates	a	new
folder	that	contains	the	project	files.	Open	the	project	in	Android	Studio	Start	Android	Studio.	In	the	Welcome	to	Android	Studio	window,	click	Open.	Note:	If	Android	Studio	is	already	open,	instead,	select	the	File	>	Open	menu	option.	In	the	file	browser,	navigate	to	where	the	unzipped	project	folder	is	located	(likely	in	your	Downloads	folder).
Double-click	on	that	project	folder.	Wait	for	Android	Studio	to	open	the	project.	Click	the	Run	button	to	build	and	run	the	app.	Make	sure	it	builds	as	expected.	Place	app	icon	files	in	the	mipmap	resource	directories.	Provide	different	versions	of	an	app	icon	bitmap	image	in	each	density	bucket	(mdpi,	hdpi,	xhdpi,	xxhdpi,	xxxhdpi)	for	backwards
compatibility	with	older	versions	of	Android.	Add	resource	qualifiers	onto	resource	directories	to	specify	resources	that	should	be	used	on	devices	with	a	certain	configuration	(v24	or	v26).	Vector	drawables	are	Android's	implementation	of	vector	graphics.	They	are	defined	in	XML	as	a	set	of	points,	lines,	and	curves,	along	with	associated	color
information.	Vector	drawables	can	be	scaled	for	any	density	without	loss	of	quality.	Adaptive	icons	were	introduced	to	the	Android	platform	in	API	26.	They	are	made	up	of	a	foreground	and	background	layer	that	follow	specific	requirements,	so	that	your	app	icon	looks	high-quality	on	a	range	of	devices	with	different	OEM	masks.	Use	Image	Asset
Studio	in	Android	Studio	to	create	legacy	and	adaptive	icons	for	your	app.	[[["Easy	to	understand","easyToUnderstand","thumb-up"],["Solved	my	problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing	the	information	I	need","missingTheInformationINeed","thumb-down"],["Too	complicated	/	too	many
steps","tooComplicatedTooManySteps","thumb-down"],["Out	of	date","outOfDate","thumb-down"],["Samples	/	code	issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],[],[],[]]

