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Algorithm	for	finding	zeros	of	functionsThis	article	is	about	Newton's	method	for	finding	roots.	For	Newton's	method	for	finding	minima,	see	Newton's	method	in	optimization.An	illustration	of	Newton's	method.In	numerical	analysis,	the	NewtonRaphson	method,	also	known	simply	as	Newton's	method,	named	after	Isaac	Newton	and	Joseph	Raphson,
is	a	root-finding	algorithm	which	produces	successively	better	approximations	to	the	roots	(or	zeroes)	of	a	real-valued	function.	The	most	basic	version	starts	with	a	real-valued	function	f,	its	derivative	f,	and	an	initial	guess	x0	for	a	root	of	f.	If	f	satisfies	certain	assumptions	and	the	initial	guess	is	close,	then	x	1	=	x	0	f	(	x	0	)	f	(	x	0	)	{\displaystyle
x_{1}=x_{0}-{\frac	{f(x_{0})}{f'(x_{0})}}}	is	a	better	approximation	of	the	root	than	x0.	Geometrically,	(x1,	0)	is	the	x-intercept	of	the	tangent	of	the	graph	of	f	at	(x0,	f(x0)):	that	is,	the	improved	guess,	x1,	is	the	unique	root	of	the	linear	approximation	of	f	at	the	initial	guess,	x0.	The	process	is	repeated	as	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	{\displaystyle
x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}}	until	a	sufficiently	precise	value	is	reached.	The	number	of	correct	digits	roughly	doubles	with	each	step.	This	algorithm	is	first	in	the	class	of	Householder's	methods,	and	was	succeeded	by	Halley's	method.	The	method	can	also	be	extended	to	complex	functions	and	to	systems	of	equations.The	purpose
of	Newton's	method	is	to	find	a	root	of	a	function.	The	idea	is	to	start	with	an	initial	guess	at	a	root,	approximate	the	function	by	its	tangent	line	near	the	guess,	and	then	take	the	root	of	the	linear	approximation	as	a	next	guess	at	the	function's	root.	This	will	typically	be	closer	to	the	function's	root	than	the	previous	guess,	and	the	method	can	be
iterated.xn+1	is	a	better	approximation	than	xn	for	the	root	x	of	the	function	f	(blue	curve)The	best	linear	approximation	to	an	arbitrary	differentiable	function	f	(	x	)	{\displaystyle	f(x)}	near	the	point	x	=	x	n	{\displaystyle	x=x_{n}}	is	the	tangent	line	to	the	curve,	with	equation	f	(	x	)	f	(	x	n	)	+	f	(	x	n	)	(	x	x	n	)	.	{\displaystyle	f(x)\approx
f(x_{n})+f'(x_{n})(x-x_{n}).}	The	root	of	this	linear	function,	the	place	where	it	intercepts	the	x	{\displaystyle	x}	-axis,	can	be	taken	as	a	closer	approximate	root	x	n	+	1	{\displaystyle	x_{n+1}}	:	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}.}	Iteration	typically	improves	the	approximationThe	process	can
be	started	with	any	arbitrary	initial	guess	x	0	{\displaystyle	x_{0}}	,	though	it	will	generally	require	fewer	iterations	to	converge	if	the	guess	is	close	to	one	of	the	function's	roots.	The	method	will	usually	converge	if	f	(	x	0	)	0	{\displaystyle	f'(x_{0})eq	0}	.	Furthermore,	for	a	root	of	multiplicity1,	the	convergence	is	at	least	quadratic	(see	Rate	of
convergence)	in	some	sufficiently	small	neighbourhood	of	the	root:	the	number	of	correct	digits	of	the	approximation	roughly	doubles	with	each	additional	step.	More	details	can	be	found	in	Analysis	below.Householder's	methods	are	similar	but	have	higher	order	for	even	faster	convergence.	However,	the	extra	computations	required	for	each	step
can	slow	down	the	overall	performance	relative	to	Newton's	method,	particularly	if	f	{\displaystyle	f}	or	its	derivatives	are	computationally	expensive	to	evaluate.In	the	Old	Babylonian	period	(19th16th	century	BCE),	the	side	of	a	square	of	known	area	could	be	effectively	approximated,	and	this	is	conjectured	to	have	been	done	using	a	special	case	of
Newton's	method,	described	algebraically	below,	by	iteratively	improving	an	initial	estimate;	an	equivalent	method	can	be	found	in	Heron	of	Alexandria's	Metrica	(1st2nd	century	CE),	so	is	often	called	Heron's	method.[1]	Jamshd	al-Ksh	used	a	method	to	solve	xP	N	=	0	to	find	roots	of	N,	a	method	that	was	algebraically	equivalent	to	Newton's	method,
and	in	which	a	similar	method	was	found	in	Trigonometria	Britannica,	published	by	Henry	Briggs	in	1633.[2]The	method	first	appeared	roughly	in	Isaac	Newton's	work	in	De	analysi	per	aequationes	numero	terminorum	infinitas	(written	in	1669,	published	in	1711	by	William	Jones)	and	in	De	metodis	fluxionum	et	serierum	infinitarum	(written	in	1671,
translated	and	published	as	Method	of	Fluxions	in	1736	by	John	Colson).[3][4]	However,	while	Newton	gave	the	basic	ideas,	his	method	differs	from	the	modern	method	given	above.	He	applied	the	method	only	to	polynomials,	starting	with	an	initial	root	estimate	and	extracting	a	sequence	of	error	corrections.	He	used	each	correction	to	rewrite	the
polynomial	in	terms	of	the	remaining	error,	and	then	solved	for	a	new	correction	by	neglecting	higher-degree	terms.	He	did	not	explicitly	connect	the	method	with	derivatives	or	present	a	general	formula.	Newton	applied	this	method	to	both	numerical	and	algebraic	problems,	producing	Taylor	series	in	the	latter	case.Newton	may	have	derived	his
method	from	a	similar,	less	precise	method	by	mathematician	Franois	Vite,	however,	the	two	methods	are	not	the	same.[3]	The	essence	of	Vite's	own	method	can	be	found	in	the	work	of	the	mathematician	Sharaf	al-Din	al-Tusi.[5]The	Japanese	mathematician	Seki	Kwa	used	a	form	of	Newton's	method	in	the	1680s	to	solve	single-variable	equations,
though	the	connection	with	calculus	was	missing.[6]Newton's	method	was	first	published	in	1685	in	A	Treatise	of	Algebra	both	Historical	and	Practical	by	John	Wallis.[7]	In	1690,	Joseph	Raphson	published	a	simplified	description	in	Analysis	aequationum	universalis.[8]	Raphson	also	applied	the	method	only	to	polynomials,	but	he	avoided	Newton's
tedious	rewriting	process	by	extracting	each	successive	correction	from	the	original	polynomial.	This	allowed	him	to	derive	a	reusable	iterative	expression	for	each	problem.	Finally,	in	1740,	Thomas	Simpson	described	Newton's	method	as	an	iterative	method	for	solving	general	nonlinear	equations	using	calculus,	essentially	giving	the	description
above.	In	the	same	publication,	Simpson	also	gives	the	generalization	to	systems	of	two	equations	and	notes	that	Newton's	method	can	be	used	for	solving	optimization	problems	by	setting	the	gradient	to	zero.Arthur	Cayley	in	1879	in	The	NewtonFourier	imaginary	problem	was	the	first	to	notice	the	difficulties	in	generalizing	Newton's	method	to
complex	roots	of	polynomials	with	degree	greater	than	2	and	complex	initial	values.	This	opened	the	way	to	the	study	of	the	theory	of	iterations	of	rational	functions.Newton's	method	is	a	powerful	techniqueif	the	derivative	of	the	function	at	the	root	is	nonzero,	then	the	convergence	is	at	least	quadratic:	as	the	method	converges	on	the	root,	the
difference	between	the	root	and	the	approximation	is	squared	(the	number	of	accurate	digits	roughly	doubles)	at	each	step.	However,	there	are	some	difficulties	with	the	method.Newton's	method	requires	that	the	derivative	can	be	calculated	directly.	An	analytical	expression	for	the	derivative	may	not	be	easily	obtainable	or	could	be	expensive	to
evaluate.	In	these	situations,	it	may	be	appropriate	to	approximate	the	derivative	by	using	the	slope	of	a	line	through	two	nearby	points	on	the	function.	Using	this	approximation	would	result	in	something	like	the	secant	method	whose	convergence	is	slower	than	that	of	Newton's	method.It	is	important	to	review	the	proof	of	quadratic	convergence	of
Newton's	method	before	implementing	it.	Specifically,	one	should	review	the	assumptions	made	in	the	proof.	For	situations	where	the	method	fails	to	converge,	it	is	because	the	assumptions	made	in	this	proof	are	not	met.For	example,	in	some	cases,	if	the	first	derivative	is	not	well	behaved	in	the	neighborhood	of	a	particular	root,	then	it	is	possible
that	Newton's	method	will	fail	to	converge	no	matter	where	the	initialization	is	set.	In	some	cases,	Newton's	method	can	be	stabilized	by	using	successive	over-relaxation,	or	the	speed	of	convergence	can	be	increased	by	using	the	same	method.In	a	robust	implementation	of	Newton's	method,	it	is	common	to	place	limits	on	the	number	of	iterations,
bound	the	solution	to	an	interval	known	to	contain	the	root,	and	combine	the	method	with	a	more	robust	root	finding	method.If	the	root	being	sought	has	multiplicity	greater	than	one,	the	convergence	rate	is	merely	linear	(errors	reduced	by	a	constant	factor	at	each	step)	unless	special	steps	are	taken.	When	there	are	two	or	more	roots	that	are	close
together	then	it	may	take	many	iterations	before	the	iterates	get	close	enough	to	one	of	them	for	the	quadratic	convergence	to	be	apparent.	However,	if	the	multiplicity	m	of	the	root	is	known,	the	following	modified	algorithm	preserves	the	quadratic	convergence	rate:[9]	x	n	+	1	=	x	n	m	f	(	x	n	)	f	(	x	n	)	.	{\displaystyle	x_{n+1}=x_{n}-m{\frac
{f(x_{n})}{f'(x_{n})}}.}	This	is	equivalent	to	using	successive	over-relaxation.	On	the	other	hand,	if	the	multiplicity	m	of	the	root	is	not	known,	it	is	possible	to	estimate	m	after	carrying	out	one	or	two	iterations,	and	then	use	that	value	to	increase	the	rate	of	convergence.If	the	multiplicity	m	of	the	root	is	finite	then	g(x)	=	f(x)/f(x)	will	have	a	root	at
the	same	location	with	multiplicity	1.	Applying	Newton's	method	to	find	the	root	of	g(x)	recovers	quadratic	convergence	in	many	cases	although	it	generally	involves	the	second	derivative	of	f(x).	In	a	particularly	simple	case,	if	f(x)	=	xm	then	g(x)	=	x/m	and	Newton's	method	finds	the	root	in	a	single	iteration	with	x	n	+	1	=	x	n	g	(	x	n	)	g	(	x	n	)	=	x	n	x
n	m	1	m	=	0	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{g(x_{n})}{g'(x_{n})}}=x_{n}-{\frac	{\;{\frac	{x_{n}}{m}}\;}{\frac	{1}{m}}}=0\,.}	The	function	f(x)	=	x2	has	a	root	at	0.[10]	Since	f	is	continuously	differentiable	at	its	root,	the	theory	guarantees	that	Newton's	method	as	initialized	sufficiently	close	to	the	root	will	converge.	However,	since	the
derivative	f	is	zero	at	the	root,	quadratic	convergence	is	not	ensured	by	the	theory.	In	this	particular	example,	the	Newton	iteration	is	given	by	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	=	1	2	x	n	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}={\frac	{1}{2}}x_{n}.}	It	is	visible	from	this	that	Newton's	method	could	be	initialized	anywhere	and
converge	to	zero,	but	at	only	a	linear	rate.	If	initialized	at	1,	dozens	of	iterations	would	be	required	before	ten	digits	of	accuracy	are	achieved.The	function	f(x)	=	x	+	x4/3	also	has	a	root	at	0,	where	it	is	continuously	differentiable.	Although	the	first	derivative	f	is	nonzero	at	the	root,	the	second	derivative	f	is	nonexistent	there,	so	that	quadratic
convergence	cannot	be	guaranteed.	In	fact	the	Newton	iteration	is	given	by	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	=	x	n	4	/	3	3	+	4	x	n	1	/	3	x	n	x	n	1	/	3	3	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}={\frac	{x_{n}^{4/3}}{3+4x_{n}^{1/3}}}\approx	x_{n}\cdot	{\frac	{x_{n}^{1/3}}{3}}.}	From	this,	it	can	be	seen	that	the	rate	of
convergence	is	superlinear	but	subquadratic.	This	can	be	seen	in	the	following	tables,	the	left	of	which	shows	Newton's	method	applied	to	the	above	f(x)	=	x	+	x4/3	and	the	right	of	which	shows	Newton's	method	applied	to	f(x)	=	x	+	x2.	The	quadratic	convergence	in	iteration	shown	on	the	right	is	illustrated	by	the	orders	of	magnitude	in	the	distance
from	the	iterate	to	the	true	root	(0,1,2,3,5,10,20,39,...)	being	approximately	doubled	from	row	to	row.	While	the	convergence	on	the	left	is	superlinear,	the	order	of	magnitude	is	only	multiplied	by	about	4/3	from	row	to	row	(0,1,2,4,5,7,10,13,...).xnx	+	x4/3nxnx	+	x2n12121.4286	1012.1754	1013.3333	1014.4444	1011.4669	1021.8260	1026.6666
1027.1111	1029.0241	1049.8961	1043.9216	1033.9369	1032.5750	1052.6511	1051.5259	1051.5259	1052.4386	1072.4539	1072.3283	10102.3283	10105.0366	10105.0406	10105.4210	10205.4210	10201.3344	10131.3344	10132.9387	10392.9387	1039The	rate	of	convergence	is	distinguished	from	the	number	of	iterations	required	to	reach	a	given
accuracy.	For	example,	the	function	f(x)	=	x20	1	has	a	root	at	1.	Since	f	(1)	0	and	f	is	smooth,	it	is	known	that	any	Newton	iteration	convergent	to	1	will	converge	quadratically.	However,	if	initialized	at	0.5,	the	first	few	iterates	of	Newton's	method	are	approximately	26214,	24904,	23658,	22476,	decreasing	slowly,	with	only	the	200th	iterate	being
1.0371.	The	following	iterates	are	1.0103,	1.00093,	1.0000082,	and	1.00000000065,	illustrating	quadratic	convergence.	This	highlights	that	quadratic	convergence	of	a	Newton	iteration	does	not	mean	that	only	few	iterates	are	required;	this	only	applies	once	the	sequence	of	iterates	is	sufficiently	close	to	the	root.[11]The	function	f(x)	=	x(1	+	x2)1/2
has	a	root	at	0.	The	Newton	iteration	is	given	by	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	=	x	n	x	n	(	1	+	x	n	2	)	1	/	2	(	1	+	x	n	2	)	3	/	2	=	x	n	3	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}=x_{n}-{\frac	{x_{n}(1+x_{n}^{2})^{-1/2}}{(1+x_{n}^{2})^{-3/2}}}=-x_{n}^{3}.}	From	this,	it	can	be	seen	that	there	are	three	possible	phenomena	for
a	Newton	iteration.	If	initialized	strictly	between	1,	the	Newton	iteration	will	converge	(super-)quadratically	to	0;	if	initialized	exactly	at	1	or	1,	the	Newton	iteration	will	oscillate	endlessly	between	1;	if	initialized	anywhere	else,	the	Newton	iteration	will	diverge.[12]	This	same	trichotomy	occurs	for	f(x)	=	arctan	x.[10]In	cases	where	the	function	in
question	has	multiple	roots,	it	can	be	difficult	to	control,	via	choice	of	initialization,	which	root	(if	any)	is	identified	by	Newton's	method.	For	example,	the	function	f(x)	=	x(x2	1)(x	3)e(x	1)2/2	has	roots	at	1,	0,	1,	and	3.[13]	If	initialized	at	1.488,	the	Newton	iteration	converges	to	0;	if	initialized	at	1.487,	it	diverges	to	;	if	initialized	at	1.486,	it	converges
to	1;	if	initialized	at	1.485,	it	diverges	to	;	if	initialized	at	1.4843,	it	converges	to	3;	if	initialized	at	1.484,	it	converges	to	1.	This	kind	of	subtle	dependence	on	initialization	is	not	uncommon;	it	is	frequently	studied	in	the	complex	plane	in	the	form	of	the	Newton	fractal.Consider	the	problem	of	finding	a	root	of	f(x)	=	x1/3.	The	Newton	iteration	is	x	n	+	1
=	x	n	f	(	x	n	)	f	(	x	n	)	=	x	n	x	n	1	/	3	1	3	x	n	2	/	3	=	2	x	n	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}=x_{n}-{\frac	{x_{n}^{1/3}}{{\frac	{1}{3}}x_{n}^{-2/3}}}=-2x_{n}.}	Unless	Newton's	method	is	initialized	at	the	exact	root	0,	it	is	seen	that	the	sequence	of	iterates	will	fail	to	converge.	For	example,	even	if	initialized	at	the
reasonably	accurate	guess	of	0.001,	the	first	several	iterates	are	0.002,	0.004,	0.008,	0.016,	reaching	1048.58,	2097.15,	...	by	the	20th	iterate.	This	failure	of	convergence	is	not	contradicted	by	the	analytic	theory,	since	in	this	case	f	is	not	differentiable	at	its	root.In	the	above	example,	failure	of	convergence	is	reflected	by	the	failure	of	f(xn)	to	get
closer	to	zero	as	n	increases,	as	well	as	by	the	fact	that	successive	iterates	are	growing	further	and	further	apart.	However,	the	function	f(x)	=	x1/3ex2	also	has	a	root	at	0.	The	Newton	iteration	is	given	by	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	=	x	n	(	1	3	1	6	x	n	2	)	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}=x_{n}\left(1-{\frac	{3}{1-
6x_{n}^{2}}}\right).}	In	this	example,	where	again	f	is	not	differentiable	at	the	root,	any	Newton	iteration	not	starting	exactly	at	the	root	will	diverge,	but	with	both	xn	+	1	xn	and	f(xn)	converging	to	zero.[14]	This	is	seen	in	the	following	table	showing	the	iterates	with	initialization	1:xnf(xn)10.367881.69.0416	1021.93422.9556	1022.20481.0076
1022.43963.5015	1032.65051.2307	1032.84374.3578	1043.02321.5513	104Although	the	convergence	of	xn	+	1	xn	in	this	case	is	not	very	rapid,	it	can	be	proved	from	the	iteration	formula.	This	example	highlights	the	possibility	that	a	stopping	criterion	for	Newton's	method	based	only	on	the	smallness	of	xn	+	1	xn	and	f(xn)	might	falsely	identify	a
root.The	tangent	lines	of	x3	2x	+	2	at	0	and	1	intersect	the	x-axis	at	1	and	0	respectively,	illustrating	why	Newton's	method	oscillates	between	these	values	for	some	starting	points.It	is	easy	to	find	situations	for	which	Newton's	method	oscillates	endlessly	between	two	distinct	values.	For	example,	for	Newton's	method	as	applied	to	a	function	f	to
oscillate	between	0	and	1,	it	is	only	necessary	that	the	tangent	line	to	f	at	0	intersects	the	x-axis	at	1	and	that	the	tangent	line	to	f	at	1	intersects	the	x-axis	at	0.[14]	This	is	the	case,	for	example,	if	f(x)	=	x3	2x	+	2.	For	this	function,	it	is	even	the	case	that	Newton's	iteration	as	initialized	sufficiently	close	to	0	or	1	will	asymptotically	oscillate	between
these	values.	For	example,	Newton's	method	as	initialized	at	0.99	yields	iterates	0.99,	0.06317,	1.00628,	0.03651,	1.00196,	0.01162,	1.00020,	0.00120,	1.000002,	and	so	on.	This	behavior	is	present	despite	the	presence	of	a	root	of	f	approximately	equal	to	1.76929.In	some	cases,	it	is	not	even	possible	to	perform	the	Newton	iteration.	For	example,	if
f(x)	=	x2	1,	then	the	Newton	iteration	is	defined	by	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	=	x	n	x	n	2	1	2	x	n	=	x	n	2	+	1	2	x	n	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}=x_{n}-{\frac	{x_{n}^{2}-1}{2x_{n}}}={\frac	{x_{n}^{2}+1}{2x_{n}}}.}	So	Newton's	method	cannot	be	initialized	at	0,	since	this	would	make	x1	undefined.
Geometrically,	this	is	because	the	tangent	line	to	f	at	0	is	horizontal	(i.e.	f	(0)	=	0),	never	intersecting	the	x-axis.Even	if	the	initialization	is	selected	so	that	the	Newton	iteration	can	begin,	the	same	phenomenon	can	block	the	iteration	from	being	indefinitely	continued.If	f	has	an	incomplete	domain,	it	is	possible	for	Newton's	method	to	send	the	iterates
outside	of	the	domain,	so	that	it	is	impossible	to	continue	the	iteration.[14]	For	example,	the	natural	logarithm	function	f(x)	=	ln	x	has	a	root	at	1,	and	is	defined	only	for	positive	x.	Newton's	iteration	in	this	case	is	given	by	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	=	x	n	(	1	ln	x	n	)	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}=x_{n}(1-\ln	x_{n}).}
So	if	the	iteration	is	initialized	at	e,	the	next	iterate	is	0;	if	the	iteration	is	initialized	at	a	value	larger	than	e,	then	the	next	iterate	is	negative.	In	either	case,	the	method	cannot	be	continued.Suppose	that	the	function	f	has	a	zero	at	,	i.e.,	f()	=	0,	and	f	is	differentiable	in	a	neighborhood	of	.If	f	is	continuously	differentiable	and	its	derivative	is	nonzero
at,	then	there	exists	a	neighborhood	of	such	that	for	all	starting	values	x0	in	that	neighborhood,	the	sequence	(xn)	will	converge	to	.[15]If	f	is	continuously	differentiable,	its	derivative	is	nonzero	at,	and	it	has	a	second	derivative	at,	then	the	convergence	is	quadratic	or	faster.	If	the	second	derivative	is	not	0	at	then	the	convergence	is	merely	quadratic.
If	the	third	derivative	exists	and	is	bounded	in	a	neighborhood	of	,	then:	x	i	+	1	=	f	(	)	2	f	(	)	(	x	i	)	2	+	O	(	x	i	)	3	,	{\displaystyle	\Delta	x_{i+1}={\frac	{f''(\alpha	)}{2f'(\alpha	)}}\left(\Delta	x_{i}\right)^{2}+O\left(\Delta	x_{i}\right)^{3}\,,}	where	x	i	x	i	.	{\displaystyle	\Delta	x_{i}\triangleq	x_{i}-\alpha	\,.}	If	the	derivative	is	0	at	,	then	the
convergence	is	usually	only	linear.	Specifically,	if	f	is	twice	continuously	differentiable,	f()	=	0	and	f()	0,	then	there	exists	a	neighborhood	of	such	that,	for	all	starting	values	x0	in	that	neighborhood,	the	sequence	of	iterates	converges	linearly,	with	rate	1/2.[16]	Alternatively,	if	f()	=	0	and	f(x)	0	for	x	,	xin	a	neighborhood	U	of	,	being	a	zero	of
multiplicity	r,	and	if	f	Cr(U),	then	there	exists	a	neighborhood	of	such	that,	for	all	starting	values	x0	in	that	neighborhood,	the	sequence	of	iterates	converges	linearly.However,	even	linear	convergence	is	not	guaranteed	in	pathological	situations.In	practice,	these	results	are	local,	and	the	neighborhood	of	convergence	is	not	known	in	advance.	But
there	are	also	some	results	on	global	convergence:	for	instance,	given	a	right	neighborhood	U+	of	,	if	f	is	twice	differentiable	in	U+	and	if	f	0,	f	f	>	0	in	U+,	then,	for	each	x0	in	U+	the	sequence	xk	is	monotonically	decreasing	to	.According	to	Taylor's	theorem,	any	function	f(x)	which	has	a	continuous	second	derivative	can	be	represented	by	an
expansion	about	a	point	that	is	close	to	a	root	of	f(x).	Suppose	this	root	is	.	Then	the	expansion	of	f()	about	xn	is:	f	(	)	=	f	(	x	n	)	+	f	(	x	n	)	(	x	n	)	+	R	1	{\displaystyle	f(\alpha	)=f(x_{n})+f'(x_{n})(\alpha	-x_{n})+R_{1}\,}	1where	the	Lagrange	form	of	the	Taylor	series	expansion	remainder	is	R	1	=	1	2	!	f	(	n	)	(	x	n	)	2	,	{\displaystyle	R_{1}={\frac	{1}
{2!}}f''(\xi	_{n})\left(\alpha	-x_{n}\right)^{2}\,,}	where	n	is	in	between	xn	and	.Since	is	the	root,	(1)	becomes:	0	=	f	(	)	=	f	(	x	n	)	+	f	(	x	n	)	(	x	n	)	+	1	2	f	(	n	)	(	x	n	)	2	{\displaystyle	0=f(\alpha	)=f(x_{n})+f'(x_{n})(\alpha	-x_{n})+{\tfrac	{1}{2}}f''(\xi	_{n})\left(\alpha	-x_{n}\right)^{2}\,}	2Dividing	equation	(2)	by	f(xn)	and	rearranging	gives	f	(	x	n	)	f
(	x	n	)	+	(	x	n	)	=	f	(	n	)	2	f	(	x	n	)	(	x	n	)	2	{\displaystyle	{\frac	{f(x_{n})}{f'(x_{n})}}+\left(\alpha	-x_{n}\right)={\frac	{-f''(\xi	_{n})}{2f'(x_{n})}}\left(\alpha	-x_{n}\right)^{2}}	3Remembering	that	xn	+	1	is	defined	by	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	,	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}\,,}	4one	finds	that	x	n	+	1	n	+	1	=	f	(	n	)
2	f	(	x	n	)	(	x	n	n	)	2	.	{\displaystyle	\underbrace	{\alpha	-x_{n+1}}	_{\varepsilon	_{n+1}}={\frac	{-f''(\xi	_{n})}{2f'(x_{n})}}{(\,\underbrace	{\alpha	-x_{n}}	_{\varepsilon	_{n}}\,)}^{2}\,.}	That	is,	n	+	1	=	f	(	n	)	2	f	(	x	n	)	n	2	.	{\displaystyle	\varepsilon	_{n+1}={\frac	{-f''(\xi	_{n})}{2f'(x_{n})}}\cdot	\varepsilon	_{n}^{2}\,.}	5Taking	the	absolute
value	of	both	sides	gives	|	n	+	1	|	=	|	f	(	n	)	|	2	|	f	(	x	n	)	|	n	2	.	{\displaystyle	\left|{\varepsilon	_{n+1}}\right|={\frac	{\left|f''(\xi	_{n})\right|}{2\left|f'(x_{n})\right|}}\cdot	\varepsilon	_{n}^{2}\,.}	6Equation	(6)	shows	that	the	order	of	convergence	is	at	least	quadratic	if	the	following	conditions	are	satisfied:f(x)	0;	for	all	x	I,	where	I	is	the	interval	[	|0|,
+	|0|];f(x)	is	continuous,	for	all	x	I;M	|0|	<	1where	M	is	given	by	M	=	1	2	(	sup	x	I	|	f	(	x	)	|	)	(	sup	x	I	1	|	f	(	x	)	|	)	.	{\displaystyle	M={\frac	{1}{2}}\left(\sup	_{x\in	I}\vert	f''(x)\vert	\right)\left(\sup	_{x\in	I}{\frac	{1}{\vert	f'(x)\vert	}}\right).\,}	If	these	conditions	hold,	|	n	+	1	|	M	n	2	.	{\displaystyle	\vert	\varepsilon	_{n+1}\vert	\leq	M\cdot	\varepsilon
_{n}^{2}\,.}	Suppose	that	f(x)	is	a	concave	function	on	an	interval,	which	is	strictly	increasing.	If	it	is	negative	at	the	left	endpoint	and	positive	at	the	right	endpoint,	the	intermediate	value	theorem	guarantees	that	there	is	a	zero	of	f	somewhere	in	the	interval.	From	geometrical	principles,	it	can	be	seen	that	the	Newton	iteration	xi	starting	at	the	left
endpoint	is	monotonically	increasing	and	convergent,	necessarily	to	.[17]Joseph	Fourier	introduced	a	modification	of	Newton's	method	starting	at	the	right	endpoint:	y	i	+	1	=	y	i	f	(	y	i	)	f	(	x	i	)	.	{\displaystyle	y_{i+1}=y_{i}-{\frac	{f(y_{i})}{f'(x_{i})}}.}	This	sequence	is	monotonically	decreasing	and	convergent.	By	passing	to	the	limit	in	this
definition,	it	can	be	seen	that	the	limit	of	yi	must	also	be	the	zero	.[17]	So,	in	the	case	of	a	concave	increasing	function	with	a	zero,	initialization	is	largely	irrelevant.	Newton	iteration	starting	anywhere	left	of	the	zero	will	converge,	as	will	Fourier's	modified	Newton	iteration	starting	anywhere	right	of	the	zero.	The	accuracy	at	any	step	of	the	iteration
can	be	determined	directly	from	the	difference	between	the	location	of	the	iteration	from	the	left	and	the	location	of	the	iteration	from	the	right.	If	f	is	twice	continuously	differentiable,	it	can	be	proved	using	Taylor's	theorem	that	lim	i	y	i	+	1	x	i	+	1	(	y	i	x	i	)	2	=	1	2	f	(	)	f	(	)	,	{\displaystyle	\lim	_{i\to	\infty	}{\frac	{y_{i+1}-x_{i+1}}{(y_{i}-
x_{i})^{2}}}=-{\frac	{1}{2}}{\frac	{f''(\zeta	)}{f'(\zeta	)}},}	showing	that	this	difference	in	locations	converges	quadratically	to	zero.[17]All	of	the	above	can	be	extended	to	systems	of	equations	in	multiple	variables,	although	in	that	context	the	relevant	concepts	of	monotonicity	and	concavity	are	more	subtle	to	formulate.[18]	In	the	case	of	single
equations	in	a	single	variable,	the	above	monotonic	convergence	of	Newton's	method	can	also	be	generalized	to	replace	concavity	by	positivity	or	negativity	conditions	on	an	arbitrary	higher-order	derivative	of	f.	However,	in	this	generalization,	Newton's	iteration	is	modified	so	as	to	be	based	on	Taylor	polynomials	rather	than	the	tangent	line.	In	the
case	of	concavity,	this	modification	coincides	with	the	standard	Newton	method.[19]If	we	seek	the	root	of	a	single	function	f	:	R	n	R	{\displaystyle	f:\mathbf	{R}	^{n}\to	\mathbf	{R}	}	then	the	error	n	=	x	n	{\displaystyle	\epsilon	_{n}=x_{n}-\alpha	}	is	a	vector	such	that	its	components	obey	k	(	n	+	1	)	=	1	2	(	(	n	)	)	T	Q	k	(	n	)	+	O	(	(	n	)	3	)
{\displaystyle	\epsilon	_{k}^{(n+1)}={\frac	{1}{2}}(\epsilon	^{(n)})^{T}Q_{k}\epsilon	^{(n)}+O(\|\epsilon	^{(n)}\|^{3})}	where	Q	k	{\displaystyle	Q_{k}}	is	a	quadratic	form:	(	Q	k	)	i	,	j	=	(	(	D	2	f	)	1	)	i	,	3	f	x	j	x	k	x	{\displaystyle	(Q_{k})_{i,j}=\sum	_{\ell	}((D^{2}f)^{-1})_{i,\ell	}{\frac	{\partial	^{3}f}{\partial	x_{j}\partial	x_{k}\partial
x_{\ell	}}}}	evaluated	at	the	root	{\displaystyle	\alpha	}	(where	D	2	f	{\displaystyle	D^{2}f}	is	the	2nd	derivative	Hessian	matrix).Newton's	method	is	one	of	many	known	methods	of	computing	square	roots.	Given	a	positive	number	a,	the	problem	of	finding	a	number	x	such	that	x2	=	a	is	equivalent	to	finding	a	root	of	the	function	f(x)	=	x2	a.	The
Newton	iteration	defined	by	this	function	is	given	by	x	n	+	1	=	x	n	f	(	x	n	)	f	(	x	n	)	=	x	n	x	n	2	a	2	x	n	=	1	2	(	x	n	+	a	x	n	)	.	{\displaystyle	x_{n+1}=x_{n}-{\frac	{f(x_{n})}{f'(x_{n})}}=x_{n}-{\frac	{x_{n}^{2}-a}{2x_{n}}}={\frac	{1}{2}}\left(x_{n}+{\frac	{a}{x_{n}}}\right).}	This	happens	to	coincide	with	the	"Babylonian"	method	of	finding
square	roots,	which	consists	of	replacing	an	approximate	root	xn	by	the	arithmetic	mean	of	xn	and	axn.	By	performing	this	iteration,	it	is	possible	to	evaluate	a	square	root	to	any	desired	accuracy	by	only	using	the	basic	arithmetic	operations.The	following	three	tables	show	examples	of	the	result	of	this	computation	for	finding	the	square	root	of	612,
with	the	iteration	initialized	at	the	values	of	1,	10,	and	20.	Each	row	in	a	"xn"	column	is	obtained	by	applying	the	preceding	formula	to	the	entry	above	it,	for	instance	306.5	=	1	2	(	1	+	612	1	)	.	{\displaystyle	306.5={\frac	{1}{2}}\left(1+{\frac	{612}{1}}\right).}	xnf(xn)xnf(xn)xnf(xn)16111051220212306.59.3330
10435.6655.3625.328.09154.24836867862.3180	10426.395505618084.72224.74486166010.3081879.10799786445.6461	10324.79063549252.575624.73863453743.8777	10543.42212868221.2735	10324.73868829412.6985	10324.73863375376.1424	101328.7581624288215.0324.73863375382.9746	10925.019538536913.97724.74021067127.8024
10224.73863380402.4865	10624.73863375372.5256	1015The	correct	digits	are	underlined.	It	is	seen	that	with	only	a	few	iterations	one	can	obtain	a	solution	accurate	to	many	decimal	places.	The	first	table	shows	that	this	is	true	even	if	the	Newton	iteration	were	initialized	by	the	very	inaccurate	guess	of	1.When	computing	any	nonzero	square	root,
the	first	derivative	of	f	must	be	nonzero	at	the	root,	and	that	f	is	a	smooth	function.	So,	even	before	any	computation,	it	is	known	that	any	convergent	Newton	iteration	has	a	quadratic	rate	of	convergence.	This	is	reflected	in	the	above	tables	by	the	fact	that	once	a	Newton	iterate	gets	close	to	the	root,	the	number	of	correct	digits	approximately
doubles	with	each	iteration.Consider	the	problem	of	finding	the	positive	number	x	with	cos	x	=	x3.	We	can	rephrase	that	as	finding	the	zero	of	f(x)	=	cos(x)	x3.	We	have	f(x)	=	sin(x)	3x2.	Since	cos(x)	1	for	all	x	and	x3	>	1	for	x	>	1,	we	know	that	our	solution	lies	between	0	and	1.	A	starting	value	of	0	will	lead	to	an	undefined	result	which	illustrates	the
importance	of	using	a	starting	point	close	to	the	solution.	For	example,	with	an	initial	guess	x0	=	0.5,	the	sequence	given	by	Newton's	method	is:	x	1	=	x	0	f	(	x	0	)	f	(	x	0	)	=	0.5	cos	0.5	0.5	3	sin	0.5	3	0.5	2	=	1.112	141	637	097	x	2	=	x	1	f	(	x	1	)	f	(	x	1	)	=	=	0.	_	909	672	693	736	x	3	=	=	=	0.86	_	7	263	818	209	x	4	=	=	=	0.865	47	_	7	135	298	x	5	=	=	=
0.865	474	033	1	_	11	x	6	=	=	=	0.865	474	033	102	_	{\displaystyle	{\begin{matrix}x_{1}&=&x_{0}-{\dfrac	{f(x_{0})}{f'(x_{0})}}&=&0.5-{\dfrac	{\cos	0.5-0.5^{3}}{-\sin	0.5-3\times	0.5^{2}}}&=&1.112\,141\,637\,097\dots	\\x_{2}&=&x_{1}-{\dfrac	{f(x_{1})}{f'(x_{1})}}&=&\vdots	&=&{\underline	{0.}}909\,672\,693\,736\dots
\\x_{3}&=&\vdots	&=&\vdots	&=&{\underline	{0.86}}7\,263\,818\,209\dots	\\x_{4}&=&\vdots	&=&\vdots	&=&{\underline	{0.865\,47}}7\,135\,298\dots	\\x_{5}&=&\vdots	&=&\vdots	&=&{\underline	{0.865\,474\,033\,1}}11\dots	\\x_{6}&=&\vdots	&=&\vdots	&=&{\underline	{0.865\,474\,033\,102}}\dots	\end{matrix}}}	The	correct	digits	are
underlined	in	the	above	example.	In	particular,	x6	is	correct	to	12	decimal	places.	We	see	that	the	number	of	correct	digits	after	the	decimal	point	increases	from	2	(for	x3)	to	5	and	10,	illustrating	the	quadratic	convergence.One	may	also	use	Newton's	method	to	solve	systems	of	k	equations,	which	amounts	to	finding	the	(simultaneous)	zeroes	of	k
continuously	differentiable	functions	f	:	R	k	R	.	{\displaystyle	f:\mathbb	{R}	^{k}\to	\mathbb	{R}	.}	This	is	equivalent	to	finding	the	zeroes	of	a	single	vector-valued	function	F	:	R	k	R	k	.	{\displaystyle	F:\mathbb	{R}	^{k}\to	\mathbb	{R}	^{k}.}	In	the	formulation	given	above,	the	scalars	xn	are	replaced	by	vectors	xn	and	instead	of	dividing	the
function	f(xn)	by	its	derivative	f(xn)	one	instead	has	to	left	multiply	the	function	F(xn)	by	the	inverse	of	its	k	k	Jacobian	matrix	JF(xn).[20][21][22]	This	results	in	the	expression	x	n	+	1	=	x	n	J	F	(	x	n	)	1	F	(	x	n	)	.	{\displaystyle	\mathbf	{x}	_{n+1}=\mathbf	{x}	_{n}-J_{F}(\mathbf	{x}	_{n})^{-1}F(\mathbf	{x}	_{n}).}	or,	by	solving	the	system	of	linear
equations	J	F	(	x	n	)	(	x	n	+	1	x	n	)	=	F	(	x	n	)	{\displaystyle	J_{F}(\mathbf	{x}	_{n})(\mathbf	{x}	_{n+1}-\mathbf	{x}	_{n})=-F(\mathbf	{x}	_{n})}	for	the	unknown	xn	+	1	xn.[23]The	k-dimensional	variant	of	Newton's	method	can	be	used	to	solve	systems	of	greater	than	k	(nonlinear)	equations	as	well	if	the	algorithm	uses	the	generalized	inverse	of
the	non-square	Jacobian	matrix	J+	=	(JTJ)1JT	instead	of	the	inverse	of	J.	If	the	nonlinear	system	has	no	solution,	the	method	attempts	to	find	a	solution	in	the	non-linear	least	squares	sense.	See	GaussNewton	algorithm	for	more	information.For	example,	the	following	set	of	equations	needs	to	be	solved	for	vector	of	points	[	x	1	,	x	2	]	,	{\displaystyle	\	[\
x_{1},x_{2}\	]\	,}	given	the	vector	of	known	values	[	2	,	3	]	.	{\displaystyle	\	[\	2,3\	]~.}	[24]	5	x	1	2	+	x	1	x	2	2	+	sin	2	(	2	x	2	)	=	2	e	2	x	1	x	2	+	4	x	2	=	3	{\displaystyle	{\begin{array}{lcr}5\	x_{1}^{2}+x_{1}\	x_{2}^{2}+\sin	^{2}(2\	x_{2})&=\quad	2\\e^{2\	x_{1}-x_{2}}+4\	x_{2}&=\quad	3\end{array}}}	the	function	vector,	F	(	X	k	)	,
{\displaystyle	\	F(X_{k})\	,}	and	Jacobian	Matrix,	J	(	X	k	)	{\displaystyle	\	J(X_{k})\	}	for	iteration	k,	and	the	vector	of	known	values,	Y	,	{\displaystyle	\	Y\	,}	are	defined	below.	F	(	X	k	)	=	[	f	1	(	X	k	)	f	2	(	X	k	)	]	=	[	5	x	1	2	+	x	1	x	2	2	+	sin	2	(	2	x	2	)	e	2	x	1	x	2	+	4	x	2	]	k	J	(	X	k	)	=	[	f	1	(	X	)	x	1	,	f	1	(	X	)	x	2	f	2	(	X	)	x	1	,	f	2	(	X	)	x	2	]	k	=	[	10	x	1	+	x	2	2	,
2	x	1	x	2	+	4	sin	(	2	x	2	)	cos	(	2	x	2	)	2	e	2	x	1	x	2	,	e	2	x	1	x	2	+	4	]	k	Y	=	[	2	3	]	{\displaystyle	{\begin{aligned}~&F(X_{k})~=~{\begin{bmatrix}{\begin{aligned}~&f_{1}(X_{k})\\~&f_{2}(X_{k})\end{aligned}}\end{bmatrix}}~=~{\begin{bmatrix}{\begin{aligned}~&5\	x_{1}^{2}+x_{1}\	x_{2}^{2}+\sin	^{2}(2\	x_{2})\\~&e^{2\	x_{1}-
x_{2}}+4\	x_{2}\end{aligned}}\end{bmatrix}}_{k}\\~&J(X_{k})={\begin{bmatrix}~{\frac	{\	\partial	{f_{1}(X)}\	}{\partial	{x_{1}}}}\	,&~{\frac	{\	\partial	{f_{1}(X)}\	}{\partial	{x_{2}}}}~\\~{\frac	{\	\partial	{f_{2}(X)}\	}{\partial	{x_{1}}}}\	,&~{\frac	{\	\partial	{f_{2}(X)}\	}{\partial	{x_{2}}}}~\end{bmatrix}}_{k}~=~{\begin{bmatrix}
{\begin{aligned}~&10\	x_{1}+x_{2}^{2}\	,&&2\	x_{1}\	x_{2}+4\	\sin(2\	x_{2})\	\cos(2\	x_{2})\\~&2\	e^{2\	x_{1}-x_{2}}\	,&&-e^{2\	x_{1}-x_{2}}+4\end{aligned}}\end{bmatrix}}_{k}\\~&Y={\begin{bmatrix}~2~\\~3~\end{bmatrix}}\end{aligned}}}	Note	that	F	(	X	k	)	{\displaystyle	\	F(X_{k})\	}	could	have	been	rewritten	to	absorb	Y	,
{\displaystyle	\	Y\	,}	and	thus	eliminate	Y	{\displaystyle	Y}	from	the	equations.	The	equation	to	solve	for	each	iteration	are	[	10	x	1	+	x	2	2	,	2	x	1	x	2	+	4	sin	(	2	x	2	)	cos	(	2	x	2	)	2	e	2	x	1	x	2	,	e	2	x	1	x	2	+	4	]	k	[	c	1	c	2	]	k	+	1	=	[	5	x	1	2	+	x	1	x	2	2	+	sin	2	(	2	x	2	)	2	e	2	x	1	x	2	+	4	x	2	3	]	k	{\displaystyle	{\begin{aligned}{\begin{bmatrix}
{\begin{aligned}~&~10\	x_{1}+x_{2}^{2}\	,&&2x_{1}x_{2}+4\	\sin(2\	x_{2})\	\cos(2\	x_{2})~\\~&~2\	e^{2\	x_{1}-x_{2}}\	,&&-e^{2\	x_{1}-x_{2}}+4~\end{aligned}}\end{bmatrix}}_{k}{\begin{bmatrix}~c_{1}~\\~c_{2}~\end{bmatrix}}_{k+1}={\begin{bmatrix}~5\	x_{1}^{2}+x_{1}\	x_{2}^{2}+\sin	^{2}(2\	x_{2})-2~\\~e^{2\	x_{1}-
x_{2}}+4\	x_{2}-3~\end{bmatrix}}_{k}\end{aligned}}}	and	X	k	+	1	=	X	k	C	k	+	1	{\displaystyle	X_{k+1}~=~X_{k}-C_{k+1}}	The	iterations	should	be	repeated	until	[	i	=	1	i	=	2	|	f	(	x	i	)	k	(	y	i	)	k	|	]	<	E	,	{\displaystyle	\	{\Bigg	[}\sum	_{i=1}^{i=2}{\Bigl	|}f(x_{i})_{k}-(y_{i})_{k}{\Bigr	|}{\Bigg	]}


