
	

https://gesutewub.godoxevez.com/577535252891384290861525644208729813233983?ragajurakibilabavisageputogixigikirijeninemixovugunititidegabepugabekeripologobegezagivorozoje=lakekevuwizajezosikurusananitoduxusikakotujorixutibujoxixeduboloruluvejewefotipifulilijokozunojumukubetajiwikuzibikixusodalawofumupaxisaxurilomamolevirirusifewejumatuwakezumunimolapoxetefikokizajujizususifowev&utm_kwd=css+flex+grow+not+working&putopilatovexedosijogafazodam=buxekibofudutamemuvematadibogidutinefonajiradujitewasevoturoxizitadanasarefebemobawekipumajipepuwadadasami

Reddit	and	its	partners	use	cookies	and	similar	technologies	to	provide	you	with	a	better	experience.	By	accepting	all	cookies,	you	agree	to	our	use	of	cookies	to	deliver	and	maintain	our	services	and	site,	improve	the	quality	of	Reddit,	personalize	Reddit	content	and	advertising,	and	measure	the	effectiveness	of	advertising.	By	rejecting	non-essential
cookies,	Reddit	may	still	use	certain	cookies	to	ensure	the	proper	functionality	of	our	platform.	For	more	information,	please	see	our	Cookie	Notice	and	our	Privacy	Policy.	Hello,I	have	any	issue	with	flexbox,	regarding	the	flex-grow	property.So,	I	have	a	navbar	and	I	would	like	that	the	first	flexbox	item	would	grow	twice	the	size	of	the	other	children
elements.	Now,	it	doesnt	seem	to	work	with	flex-grow.nav	>	header	{	margin:	auto	auto;	padding:	0px	0px	0px	0px;	background-color:	red;	flex-grow:	2;}Codepen	Do	you	just	want	the	header	to	take	up	the	full	width	of	the	nav	container?You	have	left/right	padding	on	the	nav	you	have	also	centered	the	content	align-items:	center.You	might	create	a
container	for	the	paragraph	elements	(which	really	should	just	be	links,	set	to	display:	block	instead)	and	move	the	left/right	padding	from	the	nav	to	that	container.You	can	also	just	overflow	the	padding	on	the	nav,	although	that	isnt	really	the	best	way	of	doing	it.	But	here	is	an	example	anyway.#navbar	>	header	{	padding:	35px	0px	35px	0px;
background-color:	wheat;	/*	100%	width	+	container	padding	*/	width:	calc(100%	+	90px);	text-align:	center;}	Thanks	for	pointing	that	out.	Why	wasnt	obvious.	Im	not	seeing	the	woods	because	of	the	tree.	Ok,	got	your	solution,	tomorrow	applying	it.	Thanks	again.	slightly	off	topic,	instead	of	using	header	tag,	it	might	be	more	appropriate	to	use	a
heading	one(h1,	h2).	Header	in	html,	is	more	to	represent	the	top	element	of	your	page,	which	can	contain	various	stuff,	like	logo,	title(not	to	be	confused	with),	and	even	your	navigation	bar.Imo,	a	more	correct	hierarchy	of	your	tags	would	be:	Heading	link	A	link	B	link	C	You	could	even	use	a	list	(for	example)	to	put	your	navigation	links,	altho	it
makes	it	slightly	more	complicated	to	navigate	in	the	CSS	rules	and	will	also	require	additional	styling	Yeah,	i	had	a	similar	thought,	but	going	through	all	of	previous	challenges	and	refactor	somehow	the	whole	html	code.Theyre	far	not	the	best	work.	This	topic	was	automatically	closed	182	days	after	the	last	reply.	New	replies	are	no	longer	allowed.
Baseline	Widely	available	*The	flex-grow	CSS	property	sets	the	flex	grow	factor,	which	specifies	how	much	of	the	flex	container's	positive	free	space,	if	any,	should	be	assigned	to	the	flex	item's	main	size.When	the	flex-container's	main	size	is	larger	than	the	combined	main	sizes	of	its	flex	items,	this	positive	free	space	can	be	distributed	among	the
flex	items,	with	each	item's	growth	being	their	growth	factor	value	as	a	proportion	of	the	sum	total	of	all	the	flex	items'	flex	grow	factors.Note:It	is	recommended	to	use	the	flex	shorthand	with	a	keyword	value	like	auto	or	initial	instead	of	setting	flex-basis	on	its	own.	The	keyword	values	expand	to	reliable	combinations	of	flex-grow,	flex-shrink,	and
flex-basis,	which	help	to	achieve	the	commonly	desired	flex	behaviors.	I	grow	Item	Two	Item	Three.default-example	{	border:	1px	solid	#c5c5c5;	width:	auto;	max-height:	300px;	display:	flex;}.default-example	>	div	{	background-color:	rgba(0,	0,	255,	0.2);	border:	3px	solid	blue;	margin:	10px;	flex-grow:	1;	flex-shrink:	1;	flex-basis:	0;}/*	values	*/flex-
grow:	3;flex-grow:	0.6;/*	Global	values	*/flex-grow:	inherit;flex-grow:	initial;flex-grow:	revert;flex-grow:	revert-layer;flex-grow:	unset;The	flex-grow	property	is	specified	as	a	single	.See	.	Negative	values	are	invalid.	Defaults	to	0,	which	prevents	the	flex	item	from	growing.This	property	specifies	how	much	of	the	remaining	space	in	the	flex	container
should	be	assigned	to	the	item	(the	flex	grow	factor).The	main	size	is	either	the	width	or	height	of	the	item,	depending	on	the	flex-direction	value.The	remaining	space,	or	positive	free	space,	is	the	size	of	the	flex	container	minus	the	size	of	all	flex	items'	sizes	together.	If	all	sibling	items	have	the	same	flex	grow	factor,	then	all	items	will	receive	the
same	share	of	remaining	space.	The	common	practice	is	to	set	flex-grow:	1,	but	setting	the	flex	grow	factor	for	all	the	flex	items	to	88,	100,	1.2,	or	any	other	value	greater	than	0	will	produce	the	same	result:	the	value	is	a	ratio.If	the	flex-grow	values	differ,	the	positive	free	space	is	distributed	according	to	the	ratio	defined	by	the	different	flex	grow
factors.	The	flex-grow	factor	values	of	all	the	sibling	flex	items	are	added	together.	The	flex	container's	positive	free	space,	if	any,	is	then	divided	by	that	total.	The	main	size	of	each	flex	item	with	a	flex-grow	value	greater	than	0	will	grow	by	this	quotient	multiplied	by	its	own	growth	factor.For	example,	if	four	100px	flex	items	are	in	a	700px	container
and	the	flex	items	have	flex-grow	factors	of	0,	1,	2,	and	3,	respectively,	the	total	main	size	of	the	four	items	is	400px,	meaning	there	is	300px	of	positive	free	space	to	be	distributed.	The	sum	of	the	four	grow	factors	(0	+	1	+	2	+	3	=	6)	is	equal	to	six.	Therefore,	each	grow	factor	is	equal	to	50px	((300px	/	6).	Each	flex	item	is	given	50px	of	free	space
multiplied	by	its	flex-grow	factor	so	0,	50px,	100px,	and	150px	respectively.	The	total	flex	item	sizes	become	100px,	150px,	200px,	and	250px,	respectively.flex-grow	is	generally	used	alongside	the	other	flex	shorthand	properties,	flex-shrink	and	flex-basis.	Using	the	flex	shorthand	property	is	recommended	to	ensure	all	values	are	set.In	this	example,
the	sum	of	six	flex-grow	factors	is	equal	to	eight,	meaning	each	growth-factor	value	is	12.5%	of	the	remaining	space.HTMLThis	is	a	flex-grow	example	A,	B,	C,	and	F	have	flex-grow:	1	set.	D	and	E	have	flex-grow:	2	set.	A	B	C	D	E	FCSS#content	{	display:	flex;}div	>	div	{	border:	3px	solid	rgb(0	0	0	/	20%);}.small	{	flex-grow:	1;}.double	{	flex-grow:	2;
border:	3px	solid	rgb(0	0	0	/	20%);}Result	When	the	six	flex	items	are	distributed	along	the	container's	main	axis,	if	the	sum	of	the	main	content	of	those	flex	items	is	less	than	the	size	of	the	container's	main	axis,	the	extra	space	is	distributed	among	the	size	flex	items,	with	A,	B,	C,	and	F,	each	getting	12.5%	of	the	remaining	space	and	D	and	E	each
getting	25%	of	the	extra	space.SpecificationCSS	Flexible	Box	Layout	Module	Level	1	#	flex-grow-property	Hi!In	my	code	the	flex-grow	doesnt	work.I	use	it	at	first	time,	my	code	more	complex	than	in	the	flex-box	tutorials	and	examples,	thats	why	the	simple	examples	cant	help	me..I	dont	understand	which	class	I	have	to	write	flex-grow	in.I	want	that
the	second	div	would	be	twice	width	than	the	first.My	code:	A	few	things.Firstly,	you	cant	apply	a	fixed	width	AND	flex-grow.Secondly,	flex-grow	only	works	if	the	parent	element	has	display:flex.	In	this	case	the	section	has	display	flex	but	the	links	do	not	and	the	flexgrow	divs	are	children	of	the	linknot	the	section.Its	also	not	clear	what	look	you	are
actually	going	for.	Is	the	right	side	link	supposed	to	be	twice	as	big	as	the	leftORis	the	text	section	of	the	link	supposed	to	be	twice	as	big	as	the	picture?Finally,	flex-grow	is	NOT	the	same	as	widthIf	you	want	precise	proportions,	use	percentages	not	flex-grow.	Thank	you	for	your	answer!I	corrected	some	errors	as	you	adviced.I	want	that	the	right	div
(with	picture	and	note	too)	would	be	twice	big	as	left.Now,	the	divs	are	in	a	coloumn,	i	dont	know	why.	They	should	be	in	a	row.(I	want	to	do	it	with	flex-box,	because	I	want	to	understand	it.	Now	I	am	learning	:)Te	new	code:	So	you	want	something	like	this:	the	parent	section	has	display:flex	which	means	that	if	the	links	are	supposed	to	be	1/3	to	2/3
THEY	are	the	ones	that	need	to	have	the	flex-grow	valuein	this	case	I	just	used	flex:1	etc.	which	is	the	shorthand.BUT,	as	I	said,	flexgrow	is	NOT	the	same	as	width.	If	you	want	the	proportions	to	always	stay	the	same	youll	need	to	use	flex-shrink	and	flex-basis.Note	I	have	moved	the	text	sections	to	outside	the	picture	divs	as	it	seemed	that	we	waht
you	wanted.	Nice!But	I	dont	understant	how	could	it	work	and	in	my	site	not.There	is	something	mistake.Could	you	see	it,	please?	in	the	class	box	the	flex:1;	is	disabled.	Why?I	think	I	followed	your	example.	Maybe	the	mistake	is	somewhere	else.I	copied	all	here:Maybe	easier	to	see	in	this	way:	flex:1	wont	work	unless	the	parent	has	display:flex.Also,
you	cant	relate	the	size	of	one	element	to	another	unless	they	are	siblings	inside	the	same	parent.	The	parent	has	the	display:flex.In	the	class	galeria	and	in	vateralink,	too.class	vateralink	is	the	parents,class	galeria	is	parent	of	vateralink.They	both	have	display:flex.	I	dont	really	understand	what	is	the	problem	with	the	sizes.	Also,	you	cant	relate	the
size	of	one	element	to	another	unless	they	are	siblings	inside	the	same	parent.If	box1	and	box2	arent	in	the	same	element	you	cant	relate	their	sizes.	There	is	NO	CSS	method	that	can	do	that.	Where	should	I	write	the	size?You	cant.as	I	said..	If	box1	and	box2	arent	in	the	same	element	you	cant	relate	their	sizes.	There	is	NO	CSS	method	that	can	do
that.Youll	have	to	look	into	restructuring	your	HTML.	Oh,	so	my	html	is	wrong!	I	didnt	notice	in	your	example	that	you	put	the	box	elsewhere,	I	was	looking	only	the	CSS.Now	I	understand!	Thank	you	very	much	for	your	help!!	One	more	question:With	this	flex-box	can	I	declare	how	many	box	would	be	in	one	row?	The	forum	CSS	is	closed	to	new
topics	and	replies.	Item	3	3.	The	`flex-wrap`	property	is	not	setThe	`flex-wrap`	property	specifies	how	flex	items	are	wrapped	when	they	overflow	the	parent	element.	If	the	`flex-wrap`	property	is	not	set,	the	default	value	is	`nowrap`.	This	means	that	flex	items	will	not	be	wrapped,	and	they	will	overflow	the	parent	element	if	they	are	too	large.To	fix
this	issue,	you	can	set	the	`flex-wrap`	property	to	`wrap`.	This	will	cause	flex	items	to	be	wrapped	when	they	overflow	the	parent	element.For	example,	the	following	code	will	create	a	flex	container	with	two	flex	items.	The	first	flex	item	is	a	`div`	element	with	the	`width`	property	set	to	`50%`.	The	second	flex	item	is	a	`div`	element	with	the	`width`
property	set	to	`50%`.Without	the	`flex-wrap`	property,	the	two	flex	items	will	overflow	the	parent	element.	However,	if	you	add	the	`flex-wrap`	property	to	the	parent	element	and	set	it	to	`wrap`,	the	flex	items	will	be	wrapped.The	output	of	this	code	will	be	a	flex	container	with	two	flex	items	that	are	wrapped.	The	first	flex	item	will	be	on	the	left
side	of	the	container,	and	the	second	flex	item	will	be	on	the	right	side	of	the	container.4.	The	`flex-grow`	property	is	not	setThe	`flex-grow`	property	specifies	how	much	a	flex	item	should	grow	when	the	flex	container	has	more	space	available.	If	the	`flex-grow`	property	is	not	set,	the	default	value	is	`0`.	This	means	that	flex	items	will	not	grow	at	all
when	the	flex	container	has	more	space	available.To	fix	this	issue,	you	can	set	the	`flex-grow`	property	to	a	positive	value.	This	will	cause	the	flex	item	to	grow	when	the	flex	container	has	more	space	available.For	example,	the	following	code	will	create	a	flex	container	with	two	flex	items.	The	first	flex	item	is	a	`div`	element	with	the	`width`	property
set	to	`50%`.	The	second	flex	item	is	a	`div`	element	with	the	`width`	property	set	to	`50%`.	The	`flex-grow`	property	is	set	to	`1`	for	both	flex	items.Without	the	`flex-grow`	property,	the	two	flex	items	would	be	the	same	size.	However,	with	the	`flex-grow`	property	set	to	`1`,	the	first	flex	item	will	grow	to	fill	the	entire	flex	container.	The	second	flex
item	will	remain	the	same	size,	but	it	will	be	pushed	to	the	right	side	of	the	container.There	are	a	few	common	reasons	why	`display:	flex`	might	not	be	working.	These	include:The	`display`	property	is	not	set	to	`flex`.The	`flex-direction`	property	is	not	set.The	`flex-wrap`	property	is	not	set.The	`flex-grow`	property	is	not	set.By	checking	these
properties,	you	can	usually	fix	the	issue	and	get	`display:	flex`	working	as	expected.In	addition	to	these	common	reasons,	there	are	a	few	other	things	that	can	cause	`display:	flex`	to	not	work.	These	include:Using	the	`flex-basis`	property	with	a	negative	value.Using	the	`flex-grow`	property	with	a	value	greater	than	1.Using	the	`flex-shrink`	property
with	a	value	greater	than	1.If	you	are	experiencing	problems	with	`display:	flex`,	it	is	a	good	idea	toQ:	Why	is	my	flexbox	not	working?A:	There	are	a	few	possible	reasons	why	your	flexbox	might	not	be	working.	Here	are	some	of	the	most	common:You	forgot	to	set	the	`display`	property	to	`flex`.	This	is	the	most	common	mistake	people	make	when
using	flexbox.	To	make	an	element	flex,	you	need	to	set	its	`display`	property	to	`flex`.You	have	multiple	flex	containers	on	the	same	page.	Flexbox	only	works	on	one	level	of	elements.	If	you	have	multiple	flex	containers	on	the	same	page,	the	inner	flex	containers	will	not	be	affected	by	the	outer	flex	container.You	have	conflicting	flex	properties.
Flexbox	has	a	number	of	properties	that	can	be	used	to	control	the	layout	of	flex	items.	If	you	have	conflicting	flex	properties,	the	results	will	be	unpredictable.You	are	using	an	outdated	browser.	Flexbox	is	a	relatively	new	feature,	and	not	all	browsers	support	it.	If	you	are	using	an	outdated	browser,	you	may	not	be	able	to	use	flexbox.Here	are	some
additional	tips	for	troubleshooting	flexbox	problems:Use	the	[Flexbox	Playground](to	test	your	flexbox	code.	This	tool	can	help	you	identify	problems	with	your	flexbox	layout.Use	the	[Flexbox	Detective](to	see	if	your	browser	supports	flexbox.	This	tool	can	also	help	you	identify	problems	with	your	flexbox	layout.Read	the	[W3C	documentation	on
flexbox](for	more	information	on	how	to	use	flexbox.Q:	How	do	I	make	my	flexbox	items	stay	in	the	same	order?A:	To	make	your	flexbox	items	stay	in	the	same	order,	you	can	use	the	`order`	property.	The	`order`	property	determines	the	order	in	which	flex	items	are	rendered.	By	default,	flex	items	are	rendered	in	the	order	in	which	they	appear	in
the	HTML	markup.	However,	you	can	use	the	`order`	property	to	change	the	order	of	flex	items.To	use	the	`order`	property,	simply	add	the	`order`	property	to	the	element	that	you	want	to	change	the	order	of.	The	value	of	the	`order`	property	can	be	any	number	from	1	to	65535.	The	higher	the	value	of	the	`order`	property,	the	higher	the	element
will	be	rendered	in	the	flexbox	layout.For	example,	the	following	code	will	create	a	flexbox	layout	with	three	flex	items.	The	first	flex	item	will	be	rendered	first,	the	second	flex	item	will	be	rendered	second,	and	the	third	flex	item	will	be	rendered	third.	css.container	{	display:	flex;}.item	{	flex:	1	1	auto;}To	change	the	order	of	the	flex	items,	we	can
add	the	`order`	property	to	each	element.	Now,	the	flex	items	will	be	rendered	in	the	following	order:1.	Item	12.	Item	23.	Item	3Q:	How	do	I	make	my	flexbox	items	grow	to	fill	the	available	space?A:	To	make	your	flexbox	items	grow	to	fill	the	available	space,	you	can	use	the	`flex-grow`	property.	The	`flex-grow`	property	determines	how	much	an
element	should	grow	when	the	flex	container	has	more	space	than	it	needs.	By	default,	the	`flex-grow`	property	is	set	to	0.	This	means	that	the	element	will	not	grow	at	all	when	the	flex	container	has	more	space.To	make	an	element	grow	to	fill	the	available	space,	you	can	set	the	`flex-grow`	property	to	1.	This	will	tell	the	element	to	grow	until	it
takes	up	all	of	the	available	space	in	the	flex	container.For	example,	the	following	code	will	create	a	flexbox	layout	with	three	flex	items.	The	first	flex	itemIn	this	article,	we	discussed	the	common	reasons	why	display	flex	is	not	working.	We	covered	the	following	topics:The	difference	between	display	flex	and	other	display	propertiesThe	different	flex
properties	and	how	to	use	themCommon	mistakes	that	can	prevent	flex	from	working	properlyHow	to	troubleshoot	flex	issuesWe	hope	that	this	article	has	helped	you	understand	flex	and	how	to	use	it	effectively.	If	you	are	still	having	trouble,	please	feel	free	to	leave	a	comment	below	and	we	will	be	happy	to	help.Here	are	some	key	takeaways	from
this	article:Display	flex	is	a	powerful	layout	property	that	can	be	used	to	create	a	variety	of	layouts.The	flex	properties	allow	you	to	control	the	alignment,	wrapping,	and	sizing	of	flex	items.Flex	is	not	a	replacement	for	other	layout	properties,	such	as	position	and	float.It	is	important	to	understand	the	different	flex	properties	and	how	to	use	them
correctly.Flex	can	be	a	challenging	property	to	master,	but	it	is	well	worth	the	effort.	Marcus	GreenwoodHatch,	established	in	2011	by	Marcus	Greenwood,	has	evolved	significantly	over	the	years.	Marcus,	a	seasoned	developer,	brought	a	rich	background	in	developing	both	B2B	and	consumer	software	for	a	diverse	range	of	organizations,	including
hedge	funds	and	web	agencies.	Originally,	Hatch	was	designed	to	seamlessly	merge	content	management	with	social	networking.	We	observed	that	social	functionalities	were	often	an	afterthought	in	CMS-driven	websites	and	set	out	to	change	that.	Hatch	was	built	to	be	inherently	social,	ensuring	a	fully	integrated	experience	for	users.	Now,	Hatch
embarks	on	a	new	chapter.	While	our	past	was	rooted	in	bridging	technical	gaps	and	fostering	open-source	collaboration,	our	present	and	future	are	focused	on	unraveling	mysteries	and	answering	a	myriad	of	questions.	We	have	expanded	our	horizons	to	cover	an	extensive	array	of	topics	and	inquiries,	delving	into	the	unknown	and	the	unexplored.
Let	the	second	flex-item	grow	three	times	wider	than	the	rest:	div:nth-of-type(1)	{flex-grow:	1;}div:nth-of-type(2)	{flex-grow:	3;}div:nth-of-type(3)	{flex-grow:	1;}Try	it	Yourself	The	flex-grow	property	specifies	how	much	the	item	will	grow	relative	to	the	rest	of	the	flexible	items	inside	the	same	container.	Note:	If	the	element	is	not	a	flexible	item,	the
flex-grow	property	has	no	effect.Show	demo	Browser	SupportThe	numbers	in	the	table	specify	the	first	browser	version	that	fully	supports	the	property.	Property	flex-grow	29	11	28	9	17	flex-grow:	number|initial|inherit;	Value	Description	Play	it	number	A	number	specifying	how	much	the	item	will	grow	relative	to	the	rest	of	the	flexible	items.	Default
value	is	0	Demo	initial	Sets	this	property	to	its	default	value.	Read	about	initial	inherit	Inherits	this	property	from	its	parent	element.	Read	about	inherit	CSS	Tutorial:	CSS	Flexible	BoxCSS	Reference:	flex	propertyCSS	Reference:	flex-basis	propertyCSS	Reference:	flex-direction	propertyCSS	Reference:	flex-flow	propertyCSS	Reference:	flex-shrink
propertyCSS	Reference:	flex-wrap	propertyHTML	DOM	reference:	flexGrow	property	This	repository	was	archived	by	the	owner	on	Jan	19,	2024.	It	is	now	read-only.	This	repository	was	archived	by	the	owner	on	Jan	19,	2024.	It	is	now	read-only.	You	cant	perform	that	action	at	this	time.	Flexbox	is	easily	one	of	the	most	powerful	developments	in	CSS
ever.	But,	its	implementation	has	been	confounding	frontend	and	fullstack	devs	ever	since	it	was	introduced.In	the	last	year	alone,	6,000+	new	threads	were	posted	on	Stack	Overflow	with	questions/issues	on	CSS	flex	(Source:	Stack	Overflow	search)!Similarly,	Reddit,	Quora,	and	every	other	platform	that	developers	frequently	use	are	also	riddled
with	devs	struggling	to	get	this	very	powerful	but	often	confusing	concept	to	work	for	them.We	read	through	a	few	hundred	threads	across	platforms	to	find	these	7	issues	that	crop	up	most	frequently	when	devs	think	that	flex	is	not	working	for	them.If	you	think	some	flex	related	properties	are	not	working	in	your	code,	go	through	these	checks
quickly	to	make	sure	that	you	are	not	making	the	same	errors	as	those	thousands	of	devs	:-)1.	Are	you	using	the	correct	syntax?Make	sure	you	are	using	the	correct	and	latest	CSS	syntax	throughout	the	code,	particularly	if	you	dont	write	CSS	too	often.Its	often	easy	to	overlook	small	errors	in	CSS	selectors	or	property	names	because	default	IDEs
dont	do	a	good	job	at	highlighting	errors.Youd	be	surprised	how	many	times	we	have	discovered	display:flexbox	instead	of	display:flex	while	reviewing	our	own	code!Consider	using	a	CSS	linting	tool	like	Stylelint,	which	is	great	at	spotting	unintentional	errors	and	enforcing	best	practices.Fun(?)	fact:	display:	box	and	display:	flexbox	used	to	be	the
correct	syntax	in	the	olden	times,	way	back	in	2009	and	2012!	Remember	that	display:flex	makes	the	direct	children	of	the	container	its	applied	to,	flex	items.	So,	youll	have	to	apply	display:flex	to	the	immediate	parent	of	the	items	you	want	to	distribute	using	flex.Also,	this	applies	to	every	level	of	your	div	structure.	So,	if	you	want	to	flex	an	element
within	a	flex	element,	you	must	do	it	twice	for	both	containers.	For	example,	see	the	code	below.	Hello	World!	1	2	3	3.Are	you	using	flex-grow,	flex-shrink	and	flex-basis	correctly?flex-grow:	This	property	defines	the	ability	of	a	flex	item	to	grow	beyond	its	initial	size	to	fill	any	available	space	within	a	flex	container.flex-shrink:	This	property	defines	the
ability	of	a	flex	item	to	shrink	below	its	initial	size	to	fit	within	the	available	space	within	a	flex	container.flex-basis:	This	property	defines	the	initial	size	of	a	flex	item	before	any	available	space	is	distributed	among	the	items	in	the	container.Here	are	2	Stack	Overflow	examples	on	how	these	properties	work-Example	1:	OutputIn	the	above	code,	50%
of	300px,	i.e,	150px	is	immediately	assigned	to	the	first	item	because	of	flex-basis:	50%;The	remaining	150px	space	is	initially	empty	because	the	flex-basis	of	the	other	two	items	is	0.	Later	on,	it's	divided	into	all	three	items	equally	because	each	of	them	has	flex-grow:	1,	making	them	200px,	50px,	and	50px	respectively.Example	2:	In	the	above	code,
the	flex	items	have	flex-grow:	1	for	equal	distribution	of	space	but	don't	have	flex-basis	and	therein	lies	the	point.	When	you	miss	to	assign	a	specific	flex-basis	value	to	your	flex	items,	its	default	value	becomes	auto	and	the	width	distribution	will	be	done	according	to	the	content	size.To	fix	this	issue,	also	add	flex-basis:	0.	Flex	basis	will	ensure	that
there	is	no	default	distribution	of	width	and	the	entirety	of	it	then	will	be	distributed	equally	among	the	items	because	of	flex-grow:	1.If	you	want	to	understand	these	properties	in	much	more	detail,	check	out	this	guide	by	CSS	Tricks.	If	you	are	building	a	UI	where	certain	elements	are	to	be	same	irrespective	of	the	device	and	screen,	make	sure	that
media	queries	are	not	overriding	those	default	properties	that	need	to	work	on	each	screen.	In	the	above	example,	the	property	flex:	0	0	100%;	was	overridden	by	flex:	0	0	calc(50%	-	1rem);	in	the	media	query	and	therefore	the	user	was	not	getting	the	desired	output	in	the	UI.5.	Automatic	minimum	size	of	Flex	itemsAll	flex	items	have	an	automatic
minimum	size	min-width:	auto	or	min-height:	auto	on	the	main	axis	to	avoid	shrinking	past	its	content.	Remember	that	it	works	only	for	the	main	axis,	so	if	the	flex-direction	is	row,	only	min-width	will	become	auto	and	if	the	flex-direction	is	column,	then	only	the	min-height	become	auto.Minimum	width	or	height	when	set	to	auto	allows	flex	items	to
change	their	size	to	accommodate	the	content	properly.	You	can,	however,	override	this	default	behavior	by	setting	min-width:	0	in	row-direction	and	min-height:	0	in	column-direction.Here's	an	example	of	this	issue-	Note:	In	case	you	want	to	convert	your	email	templates	to	HTML	code,	check	out	Kombai	For	Email.6.	If	you	are	using	justify-content,
remember	that	default	width	is	auto:One	important	thing	to	keep	in	mind	is	that	if	you	are	not	explicitly	giving	a	fixed	width	to	an	element,	then	the	default	width	is	auto.An	element	with	the	width:auto	will	take	up	the	smallest	needed	space	for	the	content	and	will	shrink	or	expand	accordingly	to	fit	its	content.	In	such	cases,	justify-content	will	not
work	as	intended	because	all	the	available	space	has	already	been	covered	by	the	content	itself	and	there	is	no	extra	space	for	justify-content	to	align	the	flex	items.	This	problem	can	be	solved	by	giving	a	fixed	width	to	the	element.7.	If	your	issue	is	happening	in	some	specific	browsers/	devicesSometimes,	the	code	you	write	is	correct	but	it	doesn't
conform	to	the	ways	flex	used	to	work	earlier.	As	a	result,	it	doesn't	work	as	intended	on	some	old	browser	versions.	In	the	above	example,	the	flex	layout	is	not	working	on	some	iPads.	This	is	because	it	is	missing	the	-webkit-	syntax	that	must	be	used	for	iPads	that	have	Safari	version	6.1	or	less.Here	are	a	few	tools	and	guides	that	will	help	you
identify	and	solve	cross-browser	compatibility	issues-Autoprefixer	CSS	online-	Autoprefixer	is	a	tool	that	automatically	adds	vendor	prefixes	to	your	CSS	code.	Vendor	prefixes	are	extra	code	added	to	CSS	properties	to	ensure	they	work	correctly	on	different	browsers.	For	example:	-webkit-,	-ms-,	and	-moz-.Can	I	use-	This	tool	shows	up-to	date
browser	support	tables	for	various	web	technologies,	including	CSS	Flexbox.Backwards	compatibility	of	flexbox-	A	guide	by	MDN	that	tells	about	the	history	of	flexbox	and	how	to	write	to	code	that	is	backwards	compatible	with	the	older	versions	of	the	browsers.Flexbugs-	A	GitHub	repository	that	contains	lots	of	flexbox	issues,	particularly	dealing
with	cross-browser	compatibility	problems.Wrapping	UpThough	the	article	has	come	to	an	end,	the	bugs	are	still	alive.	We	have	covered	some	of	the	common	flexbox	issues	developers	face	and	hope	this	will	help	you	figure	out	solutions	for	your	codebase.Let	us	know	in	the	comments	if	you	find	this	blog	post	helpful	and	whether	or	not	it	has	helped
you	solve	your	flexbox	related	issues.Happy	Coding!	When	you	apply	a	CSS	property	to	an	element,	theres	lots	of	things	going	on	under	the	hood.	For	example,	lets	say	we	have	some	HTML	like	this:	Child	Child	Child	And	then	we	write	some	CSS	.parent	{	display:	flex;}	These	are	technically	not	the	only	styles	were	applying	when	we	write	that	one
line	of	CSS	above.	In	fact,	a	whole	bunch	of	properties	will	be	applied	to	the	.child	elements	here,	as	if	we	wrote	these	styles	ourselves:	.child	{	flex:	0	1	auto;	/*	Default	flex	value	*/}	Thats	weird!	Why	do	these	elements	have	these	extra	styles	applied	to	them	even	though	we	didnt	write	that	code?	Well,	thats	because	some	properties	have	defaults
that	are	then	intended	to	be	overridden	by	us.	And	if	we	dont	happen	to	know	these	styles	are	being	applied	when	were	writing	CSS,	then	our	layouts	can	get	pretty	darn	confusing	and	tough	to	manage.	That	flex	property	above	is	whats	known	as	a	shorthand	CSS	property.	And	really	what	this	is	doing	is	setting	three	separate	CSS	properties	at	the
same	time.	So	what	we	wrote	above	is	the	same	as	writing	this:	.child	{	flex-grow:	0;	flex-shrink:	1;	flex-basis:	auto;}	So,	a	shorthand	property	bundles	up	a	bunch	of	different	CSS	properties	to	make	it	easier	to	write	multiple	properties	at	once,	precisely	like	the	background	property	where	we	can	write	something	like	this:	body	{	background:
url(sweettexture.jpg)	top	center	no-repeat	fixed	padding-box	content-box	red;	}	I	try	to	avoid	shorthand	properties	because	they	can	get	pretty	confusing	and	I	often	tend	to	write	the	long	hand	versions	just	because	my	brain	fails	to	parse	long	lines	of	property	values.	But	its	recommended	to	use	the	shorthand	when	it	comes	to	flexbox,	which	isweird
that	is,	until	you	understand	that	the	flex	property	is	doing	a	lot	of	work	and	each	of	its	sub-properties	interact	with	the	others.	Also,	the	default	styles	are	a	good	thing	because	we	dont	need	to	know	what	these	flexbox	properties	are	doing	90%	of	the	time.	For	example,	when	I	use	flexbox,	I	tend	to	write	something	like	this:	.parent	{	display:	flex;
justify-content:	space-between;}	I	dont	even	need	to	care	about	the	child	elements	or	what	styles	have	been	applied	to	them,	and	thats	great!	In	this	case,	were	aligning	the	child	items	side-by-side	and	then	spacing	them	equally	between	each	other.	Two	lines	of	CSS	gives	you	a	lot	of	power	here	and	thats	the	neatest	thing	about	flexbox	and	these
inherited	styles	you	dont	have	to	understand	all	the	complexity	under	the	hood	if	you	just	want	to	do	the	same	thing	90%	of	the	time.	Its	remarkably	smart	because	all	of	that	complexity	is	hidden	out	of	view.	But	what	if	we	want	to	understand	how	flexbox	including	the	flex-grow,	flex-shrink,	and	flex-basis	properties	actually	work?	And	what	cool
things	can	we	do	with	them?	Just	go	to	the	CSS-Tricks	Almanac.	Done!	Just	kidding.	Lets	start	with	a	quick	overview	thats	a	little	bit	simplified,	and	return	to	the	default	flex	properties	that	are	applied	to	child	elements:	.child	{	flex:	0	1	auto;}	These	default	styles	are	telling	that	child	element	how	to	stretch	and	expand.	But	whenever	I	see	it	being
used	or	overridden,	I	find	it	helpful	to	think	of	these	shorthand	properties	like	this:	/*	This	is	just	how	I	think	about	the	rule	above	in	my	head	*/.child	{	flex:	[flex-grow]	[flex-shrink]	[flex-basis];}/*	or...	*/.child	{	flex:	[max]	[min]	[ideal	size];}	That	first	value	is	flex-grow	and	its	set	to	0	because,	by	default,	we	dont	want	our	elements	to	expand	at	all
(most	of	the	time).	Instead,	we	want	every	element	to	be	dependent	on	the	size	of	the	content	within	it.	Heres	an	example:	.parent	{	display:	flex;	}	Ive	added	the	contenteditable	property	to	each	.child	element	above	so	you	can	click	into	it	and	type	even	more	content.	See	how	it	responds?	Thats	the	default	behavior	of	a	flexbox	item:	flex-grow	is	set
to	0	because	we	want	the	element	to	grow	based	on	the	content	inside	it.	But!	If	we	were	to	change	the	default	of	the	flex-grow	property	from	0	to	1,	like	this	.child	{	flex:	1	1	auto;}	Then	all	the	elements	will	take	an	equal	portion	of	the	.parent	element,	butonly	if	the	lengths	of	their	contents	are	the	same.	This	is	exactly	the	same	as	writing	.child	{
flex-grow:	1;}	and	ignoring	the	other	values	because	those	have	been	set	by	default	anyway.	I	think	this	confused	me	for	such	a	long	time	when	I	started	working	with	flexible	layouts.	I	would	see	code	that	would	add	just	flex-grow	and	wonder	where	the	other	styles	are	coming	from.	It	was	like	an	infuriating	murder	mystery	that	I	just	couldnt	figure
out.	Now,	if	we	wanted	to	make	just	one	of	these	elements	grow	more	than	the	others	wed	just	need	to	do	the	following:	.child-three	{	flex:	3	1	auto;}/*	or	we	could	just	write...	*/.child-three	{	flex-grow:	3;}	Is	this	weird	code	to	look	at	even	a	decade	after	flexbox	landed	in	browsers?	It	certainly	is	for	me.	I	need	extra	brain	power	to	say,	Ah,	max,	min,
ideal	size,	when	Im	reading	the	shorthand,	but	it	does	get	easier	over	time.	Anyway,	in	the	example	above,	the	first	two	child	elements	will	take	up	proportionally	the	same	amount	of	space	but	that	third	element	will	try	to	grow	up	to	three	times	the	space	as	the	others.	Now	this	is	where	things	get	weird	because	this	is	all	dependent	on	the	content	of
the	child	elements.	Even	if	we	set	flex-grow	to	3,	like	we	did	in	the	example	above	and	then	add	more	content,	the	layout	will	do	something	odd	and	peculiar	like	this:	That	second	column	is	now	taking	up	too	much	darn	space!	Well	come	back	to	this	later,	but	for	now,	its	just	important	to	remember	that	the	content	of	a	flex	item	has	an	impact	on	how
flex-grow,	flex-shrink,	and	flex-basis	work	together.	OK	so	now	for	flex-shrink.	Remember	thats	the	second	value	in	the	shorthand:	.child	{	flex:	0	1	auto;	/*	flex-shrink	=	1	*/}	flex-shrink	tells	the	browser	what	the	minimum	size	of	an	element	should	be.	The	default	value	is	1,	which	is	saying,	Take	up	the	same	amount	of	space	at	all	times.	However!	If
we	were	to	set	that	value	to	0	like	this:	.child	{	flex:	0	0	auto;}	then	were	telling	this	element	not	to	shrink	at	all	now.	Stay	the	same	size,	you	blasted	element!	is	essentially	what	this	CSS	says,	and	thats	precisely	what	itll	do.	Well	come	back	to	this	property	in	a	bit	once	we	look	at	the	final	value	in	this	shorthand.	flex-basis	is	the	last	value	thats	added
by	default	in	the	flex	shorthand,	and	its	how	we	tell	an	element	to	stick	to	an	ideal	size.	By	default,	its	set	to	auto	which	means,	Use	my	height	or	width.	So,	when	we	set	a	parent	element	to	display:	flex	.parent	{	display:	flex;}.child	{	flex:	0	1	auto;}	Well	get	this	by	default	in	the	browser:	Notice	how	all	the	elements	are	the	width	of	their	content	by
default?	Thats	because	auto	is	saying	that	the	ideal	size	of	our	element	is	defined	by	its	content.	To	make	all	the	elements	take	up	the	full	space	of	the	parent	we	can	set	the	child	elements	to	width:	100%,	or	we	can	set	the	flex-basis	to	100%,	or	we	can	set	flex-grow	to	1.	Does	that	make	sense?	Its	weird,	huh!	It	does	when	you	think	about	it.	Each	of
these	shorthand	values	impact	the	other	and	thats	why	it	is	recommended	to	write	this	shorthand	in	the	first	place	rather	than	setting	these	values	independently	of	one	another.	OK,	moving	on.	When	we	write	something	like	this	.child-three	{	flex:	0	1	1000px;}	What	were	telling	the	browser	here	is	to	set	the	flex-basis	to	1000px	or,	please,	please,
please	just	try	and	take	up	1000px	of	space.	If	thats	not	possible,	then	the	element	will	take	up	that	much	space	proportionally	to	the	other	elements.	You	might	notice	that	on	smaller	screens	this	third	element	is	not	actually	a	1000px!	Thats	because	its	really	a	suggestion.	We	still	have	flex-shrink	applied	which	is	telling	the	element	to	shrink	to	the
same	size	as	the	other	elements.	Also,	adding	more	content	to	the	other	children	will	still	have	an	impact	here:	Now,	if	we	wanted	to	prevent	this	element	from	shrinking	at	all	we	could	write	something	like	this:	.child-three	{	flex:	0	0	1000px;}	Remember,	flex-shrink	is	the	second	value	here	and	by	setting	it	to	0	were	saying,	Dont	shrink	ever,	you
jerk.	And	so	it	wont.	The	element	will	even	break	out	of	the	parent	element	because	itll	never	get	shorter	than	1000px	wide:	Now	all	of	this	changes	if	we	set	flex-wrap	to	the	parent	element:	.parent	{	display:	flex;	flex-wrap:	wrap;}.child-three	{	flex:	0	0	1000px;}	Well	see	something	like	this:	This	is	because,	by	default,	flex	items	will	try	to	fit	into	one
line	but	flex-wrap:	wrap	will	ignore	that	entirely.	Now,	if	those	flex	items	cant	fit	in	the	same	space,	theyll	break	onto	a	new	line.	Anyway,	this	is	just	some	of	the	ways	in	which	flex	properties	bump	into	each	other	and	why	its	so	gosh	darn	valuable	to	understand	how	these	properties	work	under	the	hood.	Each	of	these	properties	can	affect	the	other,
and	if	you	dont	understand	how	one	property	works,	then	you	sort	of	dont	understand	how	any	of	it	works	at	all	which	certainly	confused	me	before	I	started	digging	into	this!	But	to	summarize:	Try	to	use	the	flex	shorthand	Remember	max,	min	and	ideal	size	when	doing	soRemember	that	the	content	of	an	element	can	impact	how	these	values	work
together,	too.	

Flex	grow	not	growing.	Flex	grow	not	working	column.	Css	flex	grow	vs	flex	shrink.	Tailwind	css	flex-grow	not	working.	Flex-grow	not	working.

