
	

https://pibonabevezuko.godoxevez.com/56404777102595297496113331549165731414728?sezitefojojaguniwofexup=vibimudanubifekufuxixebanipadufozofipuzopetedotezezibatugotupefowanovakivukavipazewavipabijolimulefawujebifuvaxitadajemubeveluxatefetibinipefixurozajiwokapimokudenevupojunosutetimixukumuvodilagakivaga&utm_term=sequencing+examples+code&lodijivumidemokovuzefukusegovuwesexasokukowodaxuwuxawaxuni=piwimirudefopisajajudenuvikojugotepudagutoledesejopunodazotelojitalugovifaxikeninoluribunixatapuxesiwesijogupuxojusizezuzapafoxufovonewujevefes






















/en/computer-science/programming-languages/content/	Sequences,	selections,	and	loops	Behind	all	of	the	software	we	use	on	a	daily	basis,	there's	a	code	being	run	with	all	sorts	of	terms	and	symbols.	Surprisingly,	it	can	often	be	broken	down	into	three	simple	programming	structures	called	sequences,	selections,	and	loops.	These	come	together	to
form	the	most	basic	instructions	and	algorithms	for	all	types	of	software.	Watch	the	video	below	to	learn	more	about	sequences,	selections,	and	loops.	A	sequence	is	a	series	of	actions	that	is	completed	in	a	specific	order.	Action	1	is	performed,	then	Action	2,	then	Action	3,	etc.,	until	all	of	the	actions	in	the	sequence	have	been	carried	out.	A	sequence
we	do	every	day	is	a	morning	routine.	You	might	wake	up,	drink	some	water,	take	a	shower,	eat	breakfast,	and	so	on.	Everyone's	routine	is	different,	but	they're	all	made	up	of	a	sequence	of	various	actions.	Selections	are	a	bit	different.	Instead	of	following	a	specific	order	of	events,	they	ask	a	question	in	order	to	figure	out	which	path	to	take	next.		
Let's	say	you	go	to	brush	your	teeth,	and	you	find	that	you're	out	of	toothpaste.	You'd	then	ask,	"Do	I	have	any	more	toothpaste?"	If	the	answer	is	no,	then	you	would	add	it	to	your	shopping	list.	But	if	the	answer	is	yes,	you	would	just	use	the	toothpaste.	This	is	really	all	a	selection	is	doing:	answering	a	question	based	on	what	it	finds.	The	third
programming	structure	is	a	loop.	Like	selections,	loops	ask	questions.	However,	the	difference	is	that	they	ask	the	same	question	over	and	over	and	over	again,	until	a	certain	task	is	complete.	For	example,	take	the	act	of	hammering	a	nail.	Even	though	you	may	not	realize	it,	you're	constantly	asking	yourself,	"Is	the	nail	all	the	way	in?"	When	the
answer	is	no,	you	hammer	the	nail	again.	You	continue	to	repeat	this	question	until	the	answer	is	yes,	and	then	you	stop.	Loops	allow	programmers	to	efficiently	code	repetitive	tasks	instead	of	having	to	write	the	same	actions	over	and	over	again.	These	three	programming	structures	may	seem	pretty	simple	on	their	own,	but	when	combined	they	can
create	some	pretty	complex	software.	/en/computer-science/should-i-learn-to-code/content/	Number	sequence	calculator	is	amongst	the	very	common	mathematics	calculators	available	today.	A	sequence,	basically,	refers	to	some	ordered	list	containing	different	objects.	And,	when	it	comes	to	number	sequence,	it	contains	numbers	in	the	ordered	list
that	follows	a	certain	pattern.	The	elements	of	the	sequence	are	called	as	terms	while	the	length	of	the	sequence	is	exactly	how	many	terms	are	there	in	it.	It	can	even	be	infinite	as	well.	In	any	number	sequence,	the	order	in	which	the	sequence	goes	on	is	very	important.	And,	there	can	be	several	terms	that	can	repeat	in	the	sequence	on	a	given
pattern.	Our	number	sequence	calculator	gives	you	access	to	three	most	commonly	used	sequences	namely	known	as	arithmetic,	geometric	and	the	Fibonacci	sequences.	All	these	sequences	can	be	implemented	in	different	mathematical	disciplines	because	of	the	convergence	properties	that	they	have.	In	case	of	a	convergent	series,	the	sequence
converges	to	a	certain	limit	and	if	it	doesn't	that	it's	a	divergent	series.	Arithmetic	Sequence	Calculator	S	No	Beginning	Balance	Interest	Principal	Ending	Balance	Arithmetic	SequenceIn	arithmetic	sequences,	the	difference	between	the	successive	terms	remains	the	same.	And	if	you	know	the	first	number	in	the	sequence	and	the	common	difference,
then	our	number	sequence	calculator	will	give	you	the	value	of	any	given	number	in	the	sequence	as	well	as	the	sum	of	the	sequence	until	that	particular	number.	Geometric	SequenceIn	geometric	sequences,	every	next	number	in	the	series	after	first	is	multiplication	of	previous	number	in	the	series	with	a	non-zero,	fixed	number.	In	our	number
sequence	calculator	for	geometric	sequence,	you	have	to	provide	the	first	number	of	the	sequence,	the	common	multiplier	and	the	position	whose	value	you	want	to	find	out	in	the	series.	As	a	result,	you	will	not	just	get	the	value	of	the	given	number	in	the	series	as	well	as	the	sum	of	series	up	to	that	point.	Fibonacci	SequenceThe	first	two	sequence
that	we	have	mentioned	above	appear	to	be	the	very	simple	ones.	However,	things	get	a	bit	complicated	with	the	Fibonacci	sequence.	The	sequence	starts	with	two	numbers	after	which	every	next	number	in	the	sequence	is	obtained	by	adding	two	numbers	it	is	preceded	by.	Any	Fibonacci	sequence	starts	with	either	0,	1	or	1,1	based	on	the	starting
point	you	choose.	So,	if	you	use	our	number	sequence	calculator	for	this	type	of	a	sequence,	all	you	have	to	enter	is	the	position	whose	value	you	want	to	find	out	and	the	result	will	show	you	the	sequence	itself,	the	number	at	the	position	you’ve	entered	and	sum	of	all	the	numbers	in	the	series	until	that	position.	So,	use	our	number	sequence
calculator	to	find	out	the	desired	information	about	a	given	sequence	as	mentioned	above.	Summary:	in	this	tutorial,	you’ll	learn	about	the	Python	sequences	and	their	basic	operations.A	sequence	is	a	positionally	ordered	collection	of	items.	And	you	can	refer	to	any	item	in	the	sequence	by	using	its	index	number	e.g.,	s[0]	and	s[1].In	Python,	the
sequence	index	starts	at	0,	not	1.	So	the	first	element	is	s[0]	and	the	second	element	is	s[1].	If	the	sequence	s	has	n	items,	the	last	item	is	s[n-1].Python	has	the	following	built-in	sequence	types:	lists,	bytearrays,	strings,	tuples,	range,	and	bytes.	Python	classifies	sequence	types	as	mutable	and	immutable.The	mutable	sequence	types	are	lists	and
bytearrays	while	the	immutable	sequence	types	are	strings,	tuples,	range,	and	bytes.A	sequence	can	be	homogeneous	or	heterogeneous.	In	a	homogeneous	sequence,	all	elements	have	the	same	type.	For	example,	strings	are	homogeneous	sequences	where	each	element	is	of	the	same	type.Lists,	however,	are	heterogeneous	sequences	where	you	can
store	elements	of	different	types	including	integer,	strings,	objects,	etc.In	general,	homogeneous	sequence	types	are	more	efficient	than	heterogeneous	in	terms	of	storage	and	operations.An	iterable	is	a	collection	of	objects	where	you	can	get	each	element	one	by	one.	Therefore,	any	sequence	is	iterable.	For	example,	a	list	is	iterable.However,	an
iterable	may	not	be	a	sequence	type.	For	example,	a	set	is	iterable	but	it’s	not	a	sequence.Generally	speaking,	iterables	are	more	general	than	sequence	types.The	following	explains	some	standard	sequence	methods:To	get	the	number	of	elements	of	a	sequence,	you	use	the	built-in	len	function:len(seq)The	following	example	uses	the	len	function	to
get	the	number	of	items	in	the	cities	list:cities	=	['San	Francisco',	'New	York',	'Washington	DC']	print(len(cities))	Code	language:	PHP	(php)Try	itOutput:3To	check	if	an	item	exists	in	a	sequence,	you	use	the	in	operator:element	in	seqThe	following	example	uses	the	in	operator	to	check	if	the	'New	York'	is	in	the	cities	list:cities	=	['San	Francisco',	'New
York',	'Washington	DC']	print('New	York'	in	cities)Code	language:	PHP	(php)Try	itOutput:TrueCode	language:	PHP	(php)To	negate	the	in	operator,	you	use	the	not	operator.	The	following	example	checks	if	'New	York'	is	not	in	the	cities	list:cities	=	['San	Francisco',	'New	York',	'Washington	DC']	print('New	York'	not	in	cities)Code	language:	PHP
(php)Try	itOutput:FalseCode	language:	PHP	(php)The	seq.index(e)	returns	the	index	of	the	first	occurrence	of	the	item	e	in	the	sequence	seq:seq.index(e)Code	language:	CSS	(css)For	example:numbers	=	[1,	4,	5,	3,	5,	7,	8,	5]	print(numbers.index(5))	Code	language:	PHP	(php)Try	itOutput:2The	index	of	the	first	occurrence	of	number	5	in	the	numbers
list	is	2.	If	the	number	is	not	in	the	sequence,	you’ll	get	an	error:numbers	=	[1,	4,	5,	3,	5,	7,	8,	5]	print(numbers.index(10))Code	language:	PHP	(php)Error:ValueError:	10	is	not	in	listCode	language:	PHP	(php)Try	itTo	find	the	index	of	the	first	occurrence	of	an	item	at	or	after	a	specific	index,	you	use	the	following	form	of	the	index	method:seq.index(e,
i)Code	language:	CSS	(css)The	following	example	returns	the	index	of	the	first	occurrence	of	the	number	5	after	the	third	index:numbers	=	[1,	4,	5,	3,	5,	7,	8,	5]	print(numbers.index(5,	3))Code	language:	PHP	(php)Try	itOutput:4The	following	form	of	the	index	method	allows	you	to	find	the	index	of	the	first	occurrence	of	an	item	at	or	after	the	index	i
and	before	index	j:seq.index(e,	i,	j)Code	language:	CSS	(css)For	example:numbers	=	[1,	4,	5,	3,	5,	7,	8,	5]	print(numbers.index(5,	3,	5))Code	language:	PHP	(php)Try	itOutput:4To	get	the	slice	from	the	index	i	to	(but	not	including)	j,	you	use	the	following	syntax:seq[i:j]Code	language:	CSS	(css)For	example:numbers	=	[1,	4,	5,	3,	5,	7,	8,	5]
print(numbers[2:6])Code	language:	PHP	(php)Try	itOutput:[5,	3,	5,	7]Code	language:	JSON	/	JSON	with	Comments	(json)When	you	slice	a	sequence,	it’s	easier	to	imagine	that	the	sequence	indexes	locate	between	two	items	like	this:The	extended	slice	allows	you	to	get	a	slice	from	i	to	(but	not	including	j)	in	steps	of	k:seq[i:j:k]Code	language:	CSS
(css)For	example:numbers	=	[1,	4,	5,	3,	5,	7,	8,	5]	print(numbers[2:6:2])Code	language:	Python	(python)Try	itOutput:[5,	5]Code	language:	JSON	/	JSON	with	Comments	(json)If	the	ordering	between	items	in	a	sequence	is	specified,	you	can	use	the	built-in	min	and	max	functions	to	find	the	minimum	and	maximum	items:numbers	=	[1,	4,	5,	3,	5,	7,	8,	5]
print(min(numbers))	print(max(numbers))	Code	language:	PHP	(php)Try	itOutput:1	8To	concatenate	two	sequences	into	a	single	sequence,	you	use	the	+	operator:s3	=	s1	+	s2The	following	example	concatenates	two	sequences	of	strings:east	=	['New	York',	'New	Jersey']	west	=	['San	Diego',	'San	Francisco']	cities	=	east	+	west	print(cities)Code
language:	PHP	(php)Try	itOutput:['New	York',	'New	Jersey',	'San	Diego',	'San	Francisco']Code	language:	JSON	/	JSON	with	Comments	(json)It’s	quite	safe	to	concatenate	immutable	sequences.	The	following	example	appends	one	element	to	the	west	list.	And	it	doesn’t	affect	the	cities	sequence:east	=	['New	York',	'New	Jersey']	west	=	['San	Diego',
'San	Francisco']	cities	=	east	+	west	west.append('Sacramento')	print(west)	print(cities)Code	language:	PHP	(php)Try	itOutput:['San	Diego',	'San	Francisco',	'Sacramento']	['New	York',	'New	Jersey',	'San	Diego',	'San	Francisco']Code	language:	JSON	/	JSON	with	Comments	(json)However,	you	should	be	aware	of	concatenations	of	mutable	sequences.
The	following	example	shows	how	to	concatenate	a	list	to	itself:city	=	[['San	Francisco',	900_000]]	cities	=	city	+	city	print(cities)Code	language:	PHP	(php)Output:[['San	Francisco',	1000000],	['San	Francisco',	1000000]]Code	language:	JSON	/	JSON	with	Comments	(json)Since	a	list	is	mutable,	the	memory	addresses	of	the	first	and	second	elements
from	the	cities	list	are	the	same:print(id(cities[0])	==	id(cities[1]))	Code	language:	PHP	(php)In	addition,	when	you	change	the	value	from	the	original	list,	the	combined	list	also	changes:city[0][1]	=	1_000_000	print(cities)Code	language:	PHP	(php)Putting	it	all	together:city	=	[['San	Francisco',	900_000]]	cities	=	city	+	city	print(cities)
print(id(cities[0])	==	id(cities[1]))	city[0][1]	=	1_000_000	print(cities)Code	language:	PHP	(php)Try	itOutput:[['San	Francisco',	900000],	['San	Francisco',	900000]]	True	[['San	Francisco',	1000000],	['San	Francisco',	1000000]]Code	language:	CSS	(css)To	repeat	a	sequence	a	number	of	times,	you	use	the	multiplication	operator	(*).	The	following
example	repeats	the	string	Python	three	times:s	=	'ha'	print(s*3)	Code	language:	PHP	(php)Try	itOutput:hahahaPython	sequences	are	positionally	ordered	collections	of	items.Was	this	tutorial	helpful	?	A	phrase	you’ll	often	hear	is	that	everything	in	Python	is	an	object,	and	every	object	has	a	type.	This	points	to	the	importance	of	data	types	in	Python.
However,	often	what	an	object	can	do	is	more	important	than	what	it	is.	So,	it’s	useful	to	discuss	categories	of	data	types	and	one	of	the	main	categories	is	Python’s	sequence.	In	this	tutorial,	you’ll	learn	about:	Basic	characteristics	of	a	sequence	Operations	that	are	common	to	most	sequences	Special	methods	associated	with	sequences	Abstract	base
classes	Sequence	and	MutableSequence	User-defined	mutable	and	immutable	sequences	and	how	to	create	them	This	tutorial	assumes	that	you’re	familiar	with	Python’s	built-in	data	types	and	with	the	basics	of	object-oriented	programming.	Take	the	Quiz:	Test	your	knowledge	with	our	interactive	“Python	Sequences:	A	Comprehensive	Guide”	quiz.
You’ll	receive	a	score	upon	completion	to	help	you	track	your	learning	progress:	Interactive	Quiz	Python	Sequences:	A	Comprehensive	Guide	In	this	quiz,	you'll	test	your	understanding	of	sequences	in	Python.	You'll	revisit	the	basic	characteristics	of	a	sequence,	operations	common	to	most	sequences,	special	methods	associated	with	sequences,	and
how	to	create	user-defined	mutable	and	immutable	sequences.	It’s	likely	you	used	a	Python	sequence	the	last	time	you	wrote	Python	code,	even	if	you	don’t	know	it.	The	term	sequence	doesn’t	refer	to	a	specific	data	type	but	to	a	category	of	data	types	that	share	common	characteristics.	A	sequence	is	a	data	structure	that	contains	items	arranged	in
order,	and	you	can	access	each	item	using	an	integer	index	that	represents	its	position	in	the	sequence.	You	can	always	find	the	length	of	a	sequence.	Here	are	some	examples	of	sequences	from	Python’s	basic	built-in	data	types:	Lists,	tuples,	and	strings	are	among	Python’s	most	basic	data	types.	Even	though	they’re	different	types	with	distinct
characteristics,	they	have	some	common	traits.	You	can	summarize	the	characteristics	that	define	a	Python	sequence	as	follows:	A	sequence	is	an	iterable,	which	means	you	can	iterate	through	it.	A	sequence	has	a	length,	which	means	you	can	pass	it	to	len()	to	get	its	number	of	elements.	An	element	of	a	sequence	can	be	accessed	based	on	its	position
in	the	sequence	using	an	integer	index.	You	can	use	the	square	bracket	notation	to	index	a	sequence.	There	are	other	built-in	data	types	in	Python	that	also	have	all	of	these	characteristics.	One	of	these	is	the	range	object:	You	can	iterate	through	a	range	object,	which	makes	it	iterable.	You	can	also	find	its	length	using	len()	and	fetch	items	through
indexing.	Therefore,	a	range	object	is	also	a	sequence.	You	can	also	verify	that	bytes	and	bytearray	objects,	two	of	Python’s	built-in	data	structures,	are	also	sequences.	Both	are	sequences	of	integers.	A	bytes	sequence	is	immutable,	while	a	bytearray	is	mutable.	In	Python,	the	key	characteristics	of	a	data	type	are	determined	using	special	methods,
which	are	defined	in	the	class	definitions.	The	special	methods	associated	with	the	properties	of	sequences	are	the	following:	.__iter__():	This	special	method	makes	an	object	iterable	using	Python’s	preferred	iteration	protocol.	However,	it’s	possible	for	a	class	without	an	.__iter__()	special	method	to	create	iterable	objects	if	the	class	has	a
.__getitem__()	special	method	that	supports	iteration.	Most	sequences	have	an	.__iter__()	special	method,	but	it’s	possible	to	have	a	sequence	without	this	method.	.__len__():	This	special	method	defines	the	length	of	an	object,	which	is	normally	the	number	of	elements	contained	within	it.	The	len()	built-in	function	calls	an	object’s	.__len__()	special
method.	Every	sequence	has	this	special	method.	.__getitem__():	This	special	method	enables	you	to	access	an	item	from	a	sequence.	The	square	brackets	notation	can	be	used	to	fetch	an	item.	The	expression	countries[0]	is	equivalent	to	countries.__getitem__(0).	For	sequences,	.__getitem__()	should	accept	integer	arguments	starting	from	zero.	Every
sequence	has	this	special	method.	This	method	can	also	ensure	an	object	is	iterable	if	the	.__iter__()	special	method	is	missing.	Therefore,	all	sequences	have	a	.__len__()	and	a	.__getitem__()	special	method	and	most	also	have	.__iter__().	However,	it’s	not	sufficient	for	an	object	to	have	these	special	methods	to	be	a	sequence.	For	example,	many
mappings	also	have	these	three	methods	but	mappings	aren’t	sequences.	A	dictionary	is	an	example	of	a	mapping.	You	can	find	the	length	of	a	dictionary	and	iterate	through	its	keys	using	a	for	loop	or	other	iteration	techniques.	You	can	also	fetch	an	item	from	a	dictionary	using	the	square	brackets	notation.	This	characteristic	is	defined	by
.__getitem__().	However,	.__getitem__()	needs	arguments	that	are	dictionary	keys	and	returns	their	matching	values.	You	can’t	index	a	dictionary	using	integers	that	refer	to	an	item’s	position	in	the	dictionary.	Therefore,	dictionaries	are	not	sequences.	All	sequences	support	indexing	using	an	integer	that	represents	the	item’s	position	within	the
sequence.	This	requirement	is	part	of	the	definition	of	a	Python	sequence.	Most	sequences	also	support	slicing,	which	is	often	closely	associated	with	indexing.	You	can	slice	most	sequences	to	access	a	subset	of	the	elements.	All	of	the	sequences	you’ve	encountered	so	far	can	be	sliced:	In	all	four	examples,	you	extract	the	items	from	index	1	up	to	but
excluding	index	4.	The	result	is	a	data	structure	of	the	same	type	as	the	original	one	containing	the	subset	of	elements.	Slicing	also	depends	on	the	.__getitem__()	special	method	in	these	data	types	and	other	sequences.	Typically,	.__getitem__()	can	accept	either	an	integer	or	a	slice	object.	The	special	method’s	behavior	depends	on	whether	it’s	passed
an	integer	or	a	slice.	However,	it’s	possible	to	have	sequences	that	don’t	support	slicing.	The	deque	data	type	in	Python’s	collections	module	is	an	example	of	this.	First,	you	can	confirm	that	a	deque	is	a	sequence:	You	can	iterate	through	a	deque,	get	its	length,	and	index	it.	Therefore,	it’s	a	sequence	but	you	can’t	slice	a	deque:	The	TypeError	shows
that	a	deque	can	only	be	indexed	using	an	integer,	and	a	slice	can’t	be	used	in	the	square	brackets.	Deques	are	optimized	to	provide	efficient	access	at	either	the	beginning	or	the	end	of	the	data	structure.	Therefore,	slicing	would	be	inefficient	and	generally	not	the	intended	use	for	deques.	Although	most	sequences	support	slicing,	you	shouldn’t
assume	that	all	of	them	do.	Most	sequences	can	be	added	to	another	sequence	of	the	same	type.	For	example,	you	can	combine	two	lists,	or	you	can	add	a	tuple	to	another	tuple:	The	output	is	a	sequence	of	the	same	type	as	the	original	ones.	However,	in	general,	you	can’t	add	sequences	of	different	types:	You	get	an	error	when	you	try	to	add	a	list
and	a	tuple.	Many	sequences	can	be	concatenated	in	this	way,	but	not	all	of	them.	Here’s	an	example	of	a	sequence	that	can’t	be	concatenated:	You	learned	earlier	that	a	range	object	is	a	sequence.	However,	it	requires	items	that	follow	specific	patterns	that	can	be	represented	by	a	start,	stop,	and	step	value.	For	this	reason,	a	range	object	can	only
represent	a	series	of	numbers	with	regular	increments	between	them.	In	the	example	above,	the	first	range	object	represents	the	numbers	from	one	to	nine.	The	second	range	object	represents	the	numbers	from	ten	to	nineteen	but	in	steps	of	two.	Therefore,	you	can’t	represent	the	concatenation	of	these	two	series	using	a	range	object,	which	must
be	defined	by	its	start,	stop,	and	step	values.	Another	difference	in	behavior	between	sequences	is	highlighted	when	using	the	augmented	assignment	operators,	such	as	+=,	on	mutable	and	immutable	data	types:	The	extended	list	is	the	same	object	as	the	original	numbers_list.	The	value	returned	by	the	built-in	id()	function	is	the	same	before	and
after	the	augmented	assignment	operation.	However,	the	behavior	is	different	when	using	tuples:	The	augmented	addition	assignment	applied	to	a	list,	which	is	a	mutable	sequence,	extends	the	same	object	with	the	new	values.	However,	tuples	are	immutable,	which	leads	the	+=	operator	to	create	a	new	object.	Built-in	sequences	support	value
comparisons	such	as	equality	and	greater	than	or	less	than	comparisons.	However,	only	sequences	of	the	same	type	can	be	compared:	When	two	sequences	of	the	same	type	are	compared	to	check	if	one	is	greater	than	or	less	than	the	other,	the	first	non-equal	value	determines	the	outcome:	Both	lists	have	the	same	first	two	values.	However,	the	third
item	in	numbers	is	larger	than	the	third	item	in	more_numbers.	Therefore,	numbers	is	greater	than	more_numbers	even	though	the	remaining	integers	in	more_numbers	are	larger.	If	the	items	in	a	sequence	are	equal	to	items	with	matching	indices	in	another	sequence,	but	one	sequence	has	more	items,	the	sequence	with	more	items	is	considered
greater:	However,	in	the	second	example,	numbers[1]	is	0,	which	is	smaller	than	more_numbers[1].	As	a	result,	more_numbers	is	greater	than	numbers.	You’ve	learned	about	features	that	define	sequences,	including	the	special	methods	they	have	in	common.	You	can	also	use	this	knowledge	to	create	user-defined	classes	that	are	sequences.	In	this
section,	you’ll	define	a	class	called	ShapePoints,	which	contains	a	number	of	points	that	define	the	vertices	of	a	shape.	You	can	create	a	file	named	shape.py:	The	class’s	.__init__()	includes	a	points	parameter.	You	pass	a	sequence	of	coordinate	pairs	when	you	create	a	ShapePoints	object,	such	as	a	list	of	tuples.	You	then	cast	the	input	sequence	as	a
new	list	object	to	avoid	some	mutability	issues	and	assign	it	to	the	data	attribute	.points.	Now	you	can	create	instances	of	this	new	class	and	explore	its	features	through	a	REPL	session:	You	import	the	class	ShapePoints	and	create	an	instance	with	three	points.	The	shape	represents	a	triangle,	and	the	data	attribute	.points	contains	the	three	tuples
with	the	points’	coordinates.	You	can	make	a	few	more	additions	to	the	basic	setup	for	this	class	before	you	start	exploring	its	sequence	features.	This	class	is	used	for	closed	shapes,	which	means	the	last	point	should	be	identical	to	the	first.	You	can	ensure	this	is	the	case	by	adding	an	extra	point	that’s	equal	to	the	first	if	it	doesn’t	already	exist.	You
also	add	a	docstring	with	a	basic	description	of	the	class:	A	ShapePoints	object	is	always	closed.	Therefore,	you	add	the	first	point	to	the	end	of	the	list	.points	if	the	first	and	last	points	aren’t	already	equal.	This	step	ensures	the	first	and	last	vertices	are	the	same.	As	you	explore	this	class	in	this	tutorial,	you’ll	make	the	necessary	changes	to	keep	the
shape	closed	even	when	you	modify	the	points	in	the	shape.	Next,	you	add	a	.__repr__()	special	method	to	define	a	string	representation	for	the	class:	The	.__repr__()	special	method	ensures	a	meaningful	output	in	all	situations	when	you	display	the	object.	It’s	always	a	good	idea	to	include	this	special	method	in	user-defined	classes.	Note:	You’ll	need
to	start	a	new	REPL	session	each	time	you	make	changes	to	the	class	definition	in	shapes.py.	You	can’t	write	the	import	statement	again	in	the	same	REPL	session,	as	this	won’t	import	the	updated	class.	It’s	also	possible	to	use	importlib	from	the	standard	library	to	reload	a	module,	but	it’s	easier	to	start	a	new	REPL.	In	a	new	REPL	session,	you	can
create	the	ShapePoints	object	again	and	display	the	object	directly	instead	of	its	.points	attribute:	The	output	shows	the	string	representation	for	the	ShapePoints	object,	which	includes	four	points	since	it’s	a	closed	shape	and	the	first	point	is	repeated	at	the	end.	Say	you	would	like	a	ShapePoints	object	to	be	a	sequence.	However,	it	doesn’t	meet	any
of	the	three	requirements	at	the	moment.	You	can	try	to	iterate	through	triangle:	When	you	try	to	iterate	through	triangle,	Python	raises	an	exception	since	the	object	is	not	iterable.	You	can	try	to	find	the	length	of	the	object:	Passing	a	ShapePoints	object	to	len()	also	doesn’t	work	and	leads	to	another	TypeError.	The	error	states	that	the	object	has	no
length.	Finally,	you	can	attempt	to	index	the	object	to	retrieve	one	of	its	elements:	Attempting	to	index	triangle	completes	the	trio	of	TypeErrors.	The	error	now	states	that	a	ShapePoints	object	is	not	subscriptable,	which	means	you	can’t	use	the	square	brackets	notation	to	access	values	within	it.	You	can	add	the	.__getitem__()	special	method	to	the
class	in	shape.py	to	make	it	subscriptable.	However,	if	you	want	a	ShapePoints	object	to	be	a	sequence,	this	special	method	needs	to	accept	integers	and	fetch	items	based	on	their	position:	You	rely	on	the	fact	that	the	.points	data	attribute	is	a	list,	which	also	makes	it	a	sequence.	Now	you	can	check	whether	indexing	works	in	a	new	REPL	session:	A
ShapePoints	object	is	now	indexable	since	you	can	use	an	integer	to	fetch	an	item	based	on	its	position.	Since	you’re	using	the	sequence	features	of	the	list	data	type	in	.points,	you	can	also	slice	a	ShapePoints	object:	This	notation	returns	a	slice	of	the	ShapePoints	object,	which	in	this	case	is	the	slice	that	includes	the	first	and	second	elements	of
triangle.	Adding	the	.__getitem__()	special	method	makes	a	ShapePoints	object	indexable.	However,	it	also	enables	other	features	that	use	this	method.	For	example,	you	can	now	iterate	through	the	ShapePoints	object:	This	code	no	longer	raises	a	TypeError,	as	it	did	earlier	in	this	tutorial.	Instead,	it	prints	the	tuples	with	the	shape’s	points,	including
the	additional	final	point	that’s	equal	to	the	first	point	since	the	shape	is	closed.	Later	in	this	tutorial,	you’ll	update	the	class	to	make	it	iterable	using	another	special	method,	.__iter__().	Using	.__iter__()	is	the	preferred	option	to	make	objects	iterable	in	modern	Python.	You	can	check	whether	an	element	is	a	member	of	triangle,	and	you	can	also	sort
the	items	in	the	shape:	The	code	outputs	True	to	show	that	(100,	100)	is	a	member	of	the	ShapePoints	object.	It	also	outputs	a	list	with	the	points	sorted	following	the	default	sorting	rules	for	tuples.	Note	that	sorted()	returns	a	list	of	tuples	and	not	a	ShapePoints	object.	Adding	.__getitem__()	adds	several	features	to	the	ShapePoints	class.	However,
there	are	other	special	methods	dedicated	to	these	features,	which	you’ll	explore	later.	You	still	can’t	get	the	length	of	a	ShapePoints	object.	In	the	next	section,	you’ll	add	another	special	method	to	define	the	length	of	an	object.	A	sized	object	is	one	that	has	a	defined	length,	which	you	can	access	using	the	built-in	len()	function.	To	make	a
ShapePoints	object	sized,	you	can	add	the	.__len__()	special	method	to	the	class	definition.	This	method	must	return	an	integer.	You’ll	need	to	decide	whether	you	want	the	length	of	the	ShapePoints	object	to	include	all	the	values	in	.points	or	whether	you	want	to	exclude	the	final	pair	of	coordinates	from	the	count	so	that	the	length	represents	the
number	of	vertices.	This	version	defines	the	length	as	the	number	of	points	in	the	shape:	Since	.points	is	a	list	and	has	a	length,	you	subtract	one	from	the	length	of	the	list	to	account	for	the	repeated	point	at	the	end	of	.points.	You	can	now	call	len(triangle)	and	get	the	number	of	points	in	the	shape.	Remember,	you’ll	need	to	start	a	new	REPL	session
to	explore	the	updated	class:	The	.__len__()	special	method	also	provides	the	object	with	a	definition	of	truthiness.	You	can	convert	any	object	to	a	True	or	False	value	using	the	built-in	bool().	By	default,	an	object	is	truthy,	which	means	it’s	converted	to	True	when	passed	to	bool().	However,	a	sized	object	is	truthy	if	it	has	a	non-zero	length	and	falsy	if
it’s	empty.	You	can	convert	triangle	into	a	Boolean	using	bool():	To	confirm	that	the	object	follows	the	truthiness	rules	for	sequences,	you’ll	need	to	create	an	empty	ShapePoints	object:	This	step	highlights	a	bug	in	your	code	that	occurs	when	there	are	no	points	in	the	shape.	Since	the	shape	is	closed,	you	duplicate	the	first	point	to	place	it	at	the	end
of	the	sequence.	However,	points[0]	raises	an	error	when	the	list	is	empty.	You	can	update	the	if	statement	in	the	class’s	.__init__()	method	to	account	for	this	case:	In	the	expression	in	the	if	statement,	if	points	is	empty,	it	evaluates	as	falsy.	The	and	expression	is	evaluated	lazily,	which	means	that	if	points	is	falsy,	the	rest	of	the	and	expression	is
ignored	and	won’t	raise	an	exception.	You	can	now	create	an	empty	ShapePoints	object	in	a	new	REPL	to	confirm	that	an	empty	object	is	falsy:	However,	this	raises	yet	another	exception.	The	.__len__()	special	method	subtracts	one	from	the	length	of	.points,	but	the	value	returned	by	.__len__()	can’t	be	negative	since	a	negative	length	is	invalid.	You
can	update	.__len__()	to	account	for	this	scenario:	If	.points	is	not	empty,	you	subtract	the	last	value	and	return	the	result.	If	there	are	no	values	in	.points,	you	return	zero.	A	new	REPL	session	confirms	that	an	empty	ShapePoints	object	is	falsy:	You	can	comment	out	the	.__len__()	definition	in	shape.py	and	run	the	same	code	in	a	new	REPL.	Without
the	.__len__()	special	method,	the	object	is	always	truthy.	The	ShapePoints	object	is	already	a	sequence	since	it’s	iterable,	indexable,	and	has	a	length.	However,	it’s	preferable	to	use	the	.__iter__()	iteration	protocol	to	make	an	object	iterable	since	this	offers	more	compatibility	across	different	types	of	iteration	and	can	provide	more	efficient	iteration.
You	can	define	this	special	method	and	rely	on	the	list	in	.points	to	provide	the	iteration:	The	.__iter__()	special	method	must	return	an	iterator,	which	is	used	in	iteration	protocols	such	as	the	for	loop.	You	create	an	iterator	from	the	list	.points	using	the	built-in	iter()	function.	Although	adding	.__iter__()	is	not	necessary	to	ensure	a	ShapePoints	object
is	a	sequence,	most	iterables	implement	this	special	method.	You	can	visualize	the	shape	with	the	help	of	the	turtle	module,	which	is	the	simplest	way	to	display	graphics	using	Python’s	standard	library.	Now	you	can	create	a	new	script	to	run	this	code:	Copied!	The	output	shows	the	shape	defined	by	the	points	in	the	ShapePoints	object:	You’ll
continue	to	work	with	the	ShapePoints	class	in	the	following	section	as	you	learn	about	another	way	to	create	user-defined	sequences.	You’ve	learned	about	the	minimum	requirements	for	an	object	to	be	a	sequence.	A	sequence	must	be	iterable,	have	a	length,	and	be	indexable.	Many	sequences	can	also	be	sliced	but	this	is	not	a	feature	that’s
universal	to	all	sequences.	There	are	other	features	that	are	common	to	many	sequences,	even	though	they’re	not	required.	The	abstract	base	class	collections.abc.Sequence	provides	a	template	that	defines	the	interface	for	most	sequences.	This	abstract	base	class	goes	further	than	the	minimum	requirements.	You	can	use	this	abstract	base	class	to
confirm	whether	a	data	type	is	a	sequence:	You	confirm	that	lists	and	tuples	are	sequences,	but	sets	and	dictionaries	aren’t.	However,	the	Sequence	abstract	base	class	sets	a	higher	bar	for	defining	sequences	than	the	basic	definition	you	learned	earlier.	You	can	try	to	check	whether	ShapePoints	is	a	sequence:	Earlier	in	this	tutorial,	you	added
special	methods	to	ShapePoints	to	ensure	it	meets	the	requirements	for	a	sequence.	However,	it	doesn’t	meet	the	higher	standards	set	by	the	Sequence	abstract	base	class.	You’ll	explore	these	additional	features	shortly.	There	are	two	apparent	definitions	of	a	sequence,	which	may	lead	to	confusion.	In	practice,	this	is	rarely	an	issue,	and	most
sequences	meet	the	higher	standards	set	by	the	abstract	base	class	Sequence.	You	can	redefine	the	ShapePoints	class	in	a	new	file	called	shape_abc.py.	In	this	version,	the	class	inherits	from	the	Sequence	abstract	base	class.	Start	by	defining	the	class’s	__init__()	special	method	as	in	the	earlier	version:	Copied!	The	new	class	inherits	from	the
abstract	base	class	Sequence.	Try	to	create	an	instance	of	this	class	in	the	REPL.	Note	that	you’re	now	importing	from	the	new	module	shape_abc.py:	When	you	try	to	create	an	instance	of	ShapePoints,	you	get	an	error.	You	can’t	have	a	sequence	without	the	.__getitem__()	and	.__len__()	methods.	You	need	to	define	these	in	a	way	that	suits	your	class
before	you	can	proceed.	You	can	use	the	same	definitions	you	used	in	the	earlier	version,	and	you	can	also	add	.__repr__()	and	.__iter__():	Copied!	The	ShapePoints	object	now	meets	the	stricter	standards	set	by	the	Sequence	abstract	base	class.	You	can	confirm	this	in	a	new	REPL	session:	What	does	this	mean?	What	extra	features	does	ShapePoints
have	now	that	it’s	a	subclass	of	the	collections.abc.Sequence	abstract	base	class?	You’ll	explore	the	answers	to	these	questions	in	the	following	sections.	Objects	of	different	data	types	have	different	methods.	However,	some	data	types	also	share	methods	with	similar	names.	For	example,	lists,	strings,	and	tuples	all	have	a	.index()	method	to	find	the
position	of	an	item	and	a	.count()	method	to	find	how	often	an	item	occurs	in	the	data	structure.	In	fact,	these	two	methods	are	the	only	methods	tuples	have	that	aren’t	special	methods.	Most	sequences	have	access	to	.index()	and	.count()	methods.	These	methods	are	part	of	the	interface	provided	by	collections.abc.Sequence.	You	can	confirm	this	by
calling	these	methods	on	the	ShapePoints	instance	you	created	in	the	previous	section:	The	object	triangle	has	access	to	these	methods	even	though	you	don’t	define	them	when	you	create	the	ShapePoints	class.	The	first	output	shows	the	index	of	the	item	(100,	100),	which	is	0.	The	.index()	method	returns	the	index	of	its	argument’s	first	occurrence
if	there’s	more	than	one.	This	method	relies	on	.__getitem__()	to	fetch	each	item	until	the	required	value	is	found,	or	it	raises	a	ValueError	if	the	value	is	not	present.	The	first	element	is	repeated	at	the	end	of	the	sequence	since	shapes	are	closed.	Therefore,	.count()	returns	2	as	there	are	two	occurrences	of	(100,	100).	This	method	relies	on	.__iter__()
to	iterate	through	the	whole	sequence	and	count	the	occurrences	of	the	value	passed	as	an	argument.	If	.__iter__()	is	not	defined,	then	.__getitem__()	is	used	instead.	However,	you	don’t	want	to	count	the	first	point	in	the	shape	twice,	so	you	can	override	the	.count()	method:	You	create	your	own	.count()	method	rather	than	using	the	one	inherited
from	the	Sequence	abstract	base	class.	You	exclude	the	last	point	in	the	shape	by	counting	the	number	of	occurrences	of	the	required	value	in	.points[:-1].	The	slice	includes	all	the	points	except	the	one	with	index	-1,	which	is	the	last	element.	You	can	refresh	the	REPL	to	make	sure	this	works:	The	.index()	and	.count()	methods	are	included	when	you
create	a	sequence	by	inheriting	from	the	abstract	base	class.	However,	you	can	also	override	the	default	methods	by	defining	your	own	versions.	Sequences	usually	also	have	two	more	characteristics:	They	are	containers.	They	are	reversible.	In	this	section	of	the	tutorial,	you’ll	explore	these	two	data	types	characteristics	and	how	to	ensure	your	user-
defined	sequences	are	also	containers	and	reversible.	Many	data	structures	are	also	containers,	which	means	that	Python	can	determine	whether	an	element	is	a	member	of	the	data	structure.	A	common	way	to	find	out	whether	a	data	structure	contains	an	element	is	to	use	the	in	keyword:	However,	this	is	not	sufficient	to	confirm	that	a	data
structure	is	a	container.	For	example,	if	you	use	the	in	keyword	on	an	iterator,	you	may	not	get	the	results	you	expect:	You	create	an	iterator	from	the	list	countries.	Python	returns	True	the	first	time	you	check	whether	Canada	is	one	of	the	countries	included	in	the	data	structure.	But	an	iterator	generates	items	when	they’re	required	and	doesn’t
store	them.	So,	the	second	time	you	check	for	membership,	Python	returns	False.	That	being	the	case,	iterators	are	not	containers.	You	can	control	the	definition	of	membership	of	an	element	using	the	.__contains__()	special	method.	This	is	one	of	the	methods	that’s	included	in	the	Sequence	abstract	base	class.	You	can	confirm	that	the	class
ShapePoints	you	created,	which	inherits	from	Sequence,	has	this	special	method:	You	call	the	special	method	.__contains__()	directly	on	triangle	to	confirm	this	special	method	exists	even	though	you	didn’t	define	it	in	the	class.	It’s	inherited	from	the	Sequence	abstract	base	class.	Keep	in	mind	that	it’s	best	to	avoid	calling	the	special	method	directly.
Special	methods	are	intended	to	be	called	behind	the	scenes.	For	example,	the	.__contains__()	special	method	is	called	when	you	use	the	in	operator	if	the	special	method	is	available.	If	you	have	specific	requirements	for	what	membership	means	in	a	user-defined	class,	you	can	override	this	method:	Copied!	You	define	the	special	method	in	the	class
definition.	In	this	example,	you	add	a	call	to	print()	to	highlight	when	the	program	calls	this	method.	When	you	repeat	the	statements	from	the	previous	REPL	session,	you’ll	also	see	this	text	displayed:	The	extra	sentence	is	printed	when	you	call	.__contains__()	directly	and	when	you	use	the	in	operator,	which	confirms	that	both	expressions	are
equivalent.	Another	special	method	that’s	included	in	the	abstract	base	class	Sequence	is	.__reversed__().	This	method	defines	how	a	sequence	can	be	reversed,	and	it’s	called	by	functions	such	as	the	built-in	reversed().	Note:	The	.__contains__()	and	.__reversed__()	special	methods	aren’t	necessary	for	an	object	to	be	a	container	and	reversible.	The
.__getitem__()	special	method	does	a	lot	of	heavy	lifting,	and	Python	will	fall	back	onto	this	method	to	determine	whether	an	item	is	a	member	of	a	data	structure	or	to	reverse	the	sequence.	You	can	confirm	this	with	the	earlier	version	of	ShapePoints	you	created,	which	doesn’t	inherit	from	Sequence	and,	therefore,	doesn’t	include	these	special
methods.	However,	these	methods	make	the	intention	clearer	and	allow	you	to	customize	your	class’s	behavior.	All	sequences	are	containers	and	are	reversible,	and	they	include	the	.__contains__()	and	.__reversed__()	special	methods	if	they	follow	the	collections.abc.Sequence	requirements.	You	defined	a	class	called	ShapePoints,	which	inherits	from
the	abstract	base	class	collections.abc.Sequence.	Next,	you	try	to	modify	one	of	the	points	in	an	instance	of	ShapePoints:	The	expression	triangle[1]	returns	the	tuple	representing	the	second	point	in	the	shape.	This	behavior	is	defined	by	the	.__getitem__()	special	method.	However,	when	you	try	to	assign	a	new	tuple	to	the	second	position	of	your
sequence,	the	program	raises	an	exception.	The	sequence	you	create	is	immutable.	Immutable	built-in	sequences	include	tuples	and	strings.	Therefore,	the	sequence	you	create	is	similar	to	these	built-in	sequences	since	you	can’t	make	changes	to	an	object	once	it’s	created.	None	of	the	methods	and	special	methods	available	to	the	class	make
changes	to	the	data	stored	within	the	sequence.	All	methods,	whether	you	write	them	or	they’re	inherited	from	Sequence,	return	values	without	modifying	the	state	of	the	object.	Note:	Special	methods	such	as	.__init__()	and	.__new__()	do	make	changes	to	the	object.	But	these	are	only	called	when	you	create	a	new	instance	since	their	purpose	is	to
create	a	new	object	and	initialize	it.	Still,	it’s	possible	to	have	mutable	sequences.	The	built-in	list	is	the	most	common	example	of	a	mutable	sequence.	You’ll	learn	how	to	create	a	user-defined	class	for	a	mutable	sequence	in	the	following	section.	You	can	make	your	custom	sequence	mutable	by	inheriting	from	a	different	abstract	base	class	called
collections.abc.MutableSequence	:	Copied!	You	import	MutableSequence	instead	of	Sequence	in	shape_abc.py.	The	class	ShapePoints	now	inherits	from	MutableSequence.	However,	you’ll	get	an	error	when	you	try	to	create	an	instance	of	this	class	in	a	new	REPL	session:	You	can’t	have	a	mutable	sequence	without	defining	three	new	methods:
.__delitem__():	This	special	method	defines	what	should	happen	when	an	item	is	deleted	from	the	sequence,	such	as	when	you	use	the	del	keyword.	.__setitem__():	This	special	method	defines	the	object’s	behavior	when	you	assign	a	value	to	a	position	in	the	sequence,	such	as	when	you	reassign	a	new	value	to	replace	an	existing	one.	.insert():	This
method	defines	the	behavior	when	you	insert	a	new	value	in	an	existing	sequence.	The	data	in	a	ShapePoints	object	is	stored	in	a	list	within	the	data	attribute	.points.	A	list	is	a	sequence,	so	you	can	use	the	list’s	mutable	properties:	Copied!	You	define	deleting	an	item	from	the	sequence	as	the	same	as	deleting	the	corresponding	item	from	the	list
.points.	The	operations	to	set	and	insert	an	item	also	use	the	equivalent	operations	on	the	list	.points.	Adding	these	methods	is	sufficient	to	make	the	sequence	mutable.	You	can	also	improve	the	logic	in	these	methods	to	account	for	the	special	requirements	for	a	closed	shape,	where	the	first	and	last	elements	are	the	same.	You	can	account	for	this
requirement	in	the	definitions	of	the	new	methods.	To	start,	update	.__delitem__():	Copied!	Whenever	you	delete	the	first	or	last	elements,	which	represent	the	same	point,	you	need	to	delete	the	first	element	and	replace	the	last	element	so	it’s	equal	to	the	sequence’s	new	first	element.	Ideally,	you	should	also	ensure	that	the	sequence	isn’t	empty
before	deleting	an	element,	but	you’ll	change	how	you	handle	such	sequences	shortly.	You	implement	this	functionality	in	a	few	steps:	In	line	7,	you	check	whether	the	index	that	you	pass	to	.__delitem__()	is	either	0,	-1,	or	the	last	index	of	self.points.	If	it	is,	then	you’re	dealing	with	the	point	that’s	duplicated	to	represent	a	closed	shape.	If	the
expression	in	line	7	evaluates	to	True,	then	you	delete	the	first	point	of	your	custom	sequence	in	line	8.	This	removes	the	duplicate	point	at	the	beginning	of	your	sequence.	Next,	in	line	8,	you	remove	the	duplicate	point	from	the	end	of	the	sequence	by	replacing	it	with	the	value	of	the	new	first	point.	That	way,	you’ve	successfully	removed	both
instances	of	the	duplicate	point.	If	you	want	to	delete	any	other	point	of	the	sequence,	then	you	delete	it	without	any	additional	actions	in	the	else	block.	You	can	confirm	this	works	in	a	new	REPL	session.	You	add	a	few	more	points	to	the	shape	to	make	it	easier	to	test	the	changes	you	made:	You	start	with	a	shape	with	five	points.	Since	shapes	are
closed,	the	object	actually	has	six	elements	as	the	first	point	is	duplicated	at	the	end	of	the	sequence.	Next,	you	delete	an	element	that	isn’t	at	either	end	of	the	sequence	with	the	statement	del	polygon[1].	Only	the	second	point	is	deleted.	When	you	remove	the	first	or	last	element,	both	ends	are	updated	to	reflect	the	new	shape.	Note	that	in	the	last
step,	the	shape	only	has	two	points,	since	the	last	element	is	always	equal	to	the	first.	This	shape	represents	a	line,	which	is	not	a	closed	shape.	A	ShapePoints	object	with	only	one	point	represents	that	point,	which	is	also	not	a	closed	shape.	If	you	prefer,	you	could	define	ShapePoints	to	be	valid	only	for	three	or	more	points	to	ensure	you	have	a
closed	shape:	You	add	a	class	attribute	.MIN_POINTS	to	define	the	minimum	number	of	points	an	object	can	have.	Then	you	update	both	.__init__()	and	.__delitem__()	to	raise	an	error	when	there’s	an	invalid	number	of	points.	When	you	initialize	the	object,	you	confirm	that	the	iterable	you	pass	to	create	the	instance	contains	at	least	three	points	since
.MIN_POINTS	is	3	in	this	example.	When	you	call	.__delitem__(),	you	check	that	there	are	at	least	four	points	before	deleting	one.	You	can	confirm	these	changes	in	a	new	REPL	session:	You	get	a	ValueError	when	you	try	to	create	a	line	with	only	two	points.	You	also	get	the	same	exception	when	you	try	to	delete	a	point	from	a	triangle	since	a
ShapePoints	object	can’t	have	fewer	than	three	points.	Note	that	the	adjustment	you	made	earlier	to	.__len__()	to	ensure	it	works	for	empty	sequences	isn’t	needed	now	since	a	ShapePoints	object	can	no	longer	be	empty.	You	also	need	to	account	for	the	special	requirements	of	a	closed	shape	when	you	modify	a	point.	Therefore,	you	need	to	update
.__setitem__()	similarly	to	how	you	modified	.__delitem__():	Copied!	You	update	both	the	first	and	last	elements	of	the	sequence	when	the	user	sets	either	the	first	or	the	last	element.	For	any	other	element,	you	only	set	the	value	required.	The	following	examples	in	a	new	REPL	session	confirm	that	.__setitem__()	works	the	way	you	expect:	Only	the
second	element	is	updated	when	you	assign	a	new	value	to	polygon[1].	However,	you	modify	both	the	first	and	last	values	when	you	update	polygon[0].	You	also	modify	both	the	first	and	last	values	when	you	change	the	last	element	in	the	ShapePoints	object.	Finally,	you	update	the	.insert()	method:	Copied!	Any	value	inserted	in	the	first	or	last
position	updates	both	values.	If	the	value	updated	is	not	the	first	or	last	element,	you	can	use	the	standard	insertion	at	the	required	position.	You	can	confirm	that	the	changes	to	.insert()	achieve	the	outcome	required.	In	this	example,	you	start	with	a	shape	with	fewer	points	in	a	new	REPL	session:	Your	code	treats	insertion	at	the	first	and	last
positions	differently	to	ensure	the	new	shape	remains	closed.	When	a	class	inherits	from	collections.abc.MutableSequence,	it	also	inherits	several	other	methods.	You’ll	recognize	some	or	all	of	these	methods	from	your	experience	with	using	lists:	.append():	Add	a	new	item	to	the	end	of	the	sequence.	.clear():	Remove	all	items	from	the	sequence.
.reverse():	Reverse	the	items	of	the	sequence	in	place,	changing	the	existing	object	rather	than	returning	a	new	one.	.extend():	Add	several	additional	items	to	the	end	of	the	sequence	by	passing	another	sequence	as	an	argument.	.pop():	Remove	an	item	based	on	its	index.	This	method	returns	the	item	that’s	removed	from	the	sequence.	.remove():
Remove	an	item	based	on	its	value.	This	method	removes	the	first	occurrence	of	the	value	in	the	sequence.	.__iadd__():	This	special	method	defines	the	behavior	for	the	augmented	addition	operator	+=,	which	for	mutable	sequences	becomes	an	in-place	operator.	All	of	these	methods	are	included	by	default	when	you	inherit	from	MutableSequence.
However,	you	may	need	to	override	their	behavior	if	your	sequence	has	certain	non-standard	requirements,	such	as	the	ShapePoints	sequence.	You	can	test	these	methods	on	the	current	version	of	ShapePoints:	You	start	with	a	shape	with	two	points.	You	call	.append()	and	.extend()	to	add	points	to	the	shape.	Next,	you	remove	a	point,	use	the
augmented	addition	operator	+=	to	extend	the	sequence	again,	and	finally	reverse	the	sequence.	The	code	doesn’t	raise	any	exceptions	since	all	the	methods	exist.	However,	not	all	these	methods	behave	the	way	you	might	expect	them	to.	Currently,	.append()	adds	a	point	at	the	beginning	and	the	end	of	the	sequence.	For	this	implementation	of
ShapePoints,	that’s	not	what	you	want	.append()	to	do.	The	problem	occurs	because	you	defined	the	class	with	special	behavior	when	new	points	are	added	at	the	end.	So,	when	you	update	the	last	element	using	the	default	.append()	method	inherited	from	the	abstract	base	class,	the	ShapePoints	class	also	updates	the	first	element.	You	can	see
similar	odd	behavior	with	.extend()	and	the	+=	operator	since	these	operations	rely	on	.append().	The	new	points	are	added	to	the	beginning	and	the	end	of	the	shape.	When	the	default	methods	you	inherit	from	the	abstract	base	class	aren’t	suitable,	you	can	override	them.	However,	it	may	not	be	necessary	to	define	all	the	methods.	With	mutable
sequences,	.append()	is	often	a	method	you	may	wish	to	update	first	when	the	defaults	aren’t	sufficient:	Copied!	You	redefine	.append()	to	add	a	new	point	before	the	final	element	since	the	final	element	mirrors	the	first	one.	Therefore,	you	call	.append()	on	the	list	stored	in	the	data	attribute	.points	and	add	the	first	element	of	the	sequence.	Now,	you
can	update	the	element	with	index	-2,	which	is	no	longer	the	last	element	of	the	sequence,	but	it’s	the	last	point	in	the	shape.	You	can	verify	what	happens	to	the	same	operations	you	tried	earlier	in	a	new	REPL	session:	When	you	append	a	new	point	to	a	ShapePoints	sequence,	the	additional	point	is	added	to	the	shape,	but	the	final	element	remains
matched	to	the	first	element.	This	correct	behavior	now	applies	to	.extend()	and	the	+=	operator.	So,	overriding	the	.append()	method	also	deals	with	these	operations	since	they	call	.append()	behind	the	scenes.	All	operations	now	work	as	intended.	The	abstract	base	classes	Sequence	and	MutableSequence	provide	you	with	the	methods	you	need	to
create	custom	sequences.	When	you	define	a	class	that	inherits	from	Sequence,	you	need	to	define	at	least	two	special	methods:	.__getitem__()	.__len__()	If	you	need	a	mutable	sequence	and	your	class	inherits	from	MutableSequence,	you’ll	also	need	at	least	three	more	methods	in	addition	to	the	two	special	methods	listed	above:	.__setitem__()
.__delitem__()	.insert()	All	sequences	will	also	have	.index()	and	.count()	available	out	of	the	box,	and	mutable	sequences	have	more	methods	you	can	use	or	override	if	you	require	special	behavior.	Here’s	the	final	version	of	the	ShapePoints	class	definition	you	wrote	in	this	tutorial:	Copied!	Different	data	types	often	share	common	traits,	and	it’s	useful
to	categorize	them	based	on	their	shared	features.	Sequences	are	data	types	that	contain	ordered	items	which	can	be	accessed	using	an	integer	index.	In	addition	to	the	basic	requirements	that	make	an	object	a	sequence,	there	are	other	features	that	are	present	in	many	sequences.	In	this	tutorial,	you	learned	about:	Basic	characteristics	of	a
sequence	Operations	that	are	common	to	most	sequences	Special	methods	associated	with	sequences	Abstract	base	classes	Sequence	and	MutableSequence	User-defined	mutable	and	immutable	sequences	and	how	to	create	them	You’re	now	better	equipped	to	use	all	the	data	types	that	fall	under	the	sequences	category,	and	you	know	how	to	deal
with	functions	requiring	arguments	that	are	sequences.	You’re	also	ready	to	craft	the	ideal	custom	classes	whenever	you	need	to	create	your	own	mutable	or	immutable	sequences.	Take	the	Quiz:	Test	your	knowledge	with	our	interactive	“Python	Sequences:	A	Comprehensive	Guide”	quiz.	You’ll	receive	a	score	upon	completion	to	help	you	track	your
learning	progress:	Interactive	Quiz	Python	Sequences:	A	Comprehensive	Guide	In	this	quiz,	you'll	test	your	understanding	of	sequences	in	Python.	You'll	revisit	the	basic	characteristics	of	a	sequence,	operations	common	to	most	sequences,	special	methods	associated	with	sequences,	and	how	to	create	user-defined	mutable	and	immutable	sequences.
I	have	an	admission	to	make.I've	used	the	terms	iterable	and	sequence	interchangeably	in	the	past	for	longer	than	I	wish	to	admit.	You	can	get	away	with	this	in	the	early	days	of	learning	to	code	in	Python.	They're	quite	similar……until	you	dig	deeper	beneath	the	surface,	which	is	what	we'll	do	in	this	article.This	is	the	second	of	seven	articles	in	this
series.	You	can	read	the	first	one	about	iterables	if	you	missed	it.	Here's	the	overview	of	the	series:IterableSequence	(this	article)MappingContainerCollectionIteratorGeneratorThere's	a	reason	why	it's	easy	to	confuse	iterables	and	sequences.	All	sequences	are	iterables.	We'll	talk	more	about	this	later.	And	you're	likely	to	see	common	data	structures
such	as	lists	and	tuples	referred	to	as	sequences	sometimes	and	as	iterables	other	times.Let's	start	with	the	headline	difference	between	the	two	terms:A	Python	sequence	is	an	iterable	that	you	can	index	using	an	integer.This	means	you	can	use	an	integer	inside	square	brackets	to	get	an	item	from	a	sequence,	such	as	some_sequence[0].	You	can	also
use	slices	within	the	square	brackets.In	the	first	article	in	the	series,	we	discussed	how	an	iterable	is	an	object	that	can	return	its	elements	one	at	a	time.	With	a	sequence,	we're	going	further.	You	can	fetch	an	item	based	on	its	position	in	the	sequence.Let's	look	at	some	examples	of	sequences:Lists,	strings,	and	tuples	are	among	the	most	common
sequences.There's	another	requirement	for	an	object	to	be	a	sequence.	It	needs	to	have	a	length:You	may	think	this	is	obvious	and	that	every	data	structure	must	have	a	length.	However,	later	in	this	series,	we'll	look	at	iterables	that	don't	have	a	length.All	sequences	are	iterables.	But	not	all	iterables	are	sequences.Let's	take	a	dictionary,	for	example.
In	the	first	article	in	the	series,	we	determined	that	a	dictionary	is	an	iterable.	Although	you	could	use	an	integer	in	the	square	brackets	to	fetch	an	item	if	that	integer	is	one	of	the	dictionary's	keys,	you	can	also	use	non-integer	data	types	as	keys.	To	put	this	in	another	way,	you	cannot	fetch	the	second	item	in	a	dictionary	by	using
my_dictionary[1].Therefore,	a	dictionary	is	an	iterable	but	not	a	sequence.Let's	look	at	some	other	data	types	that	are	not	sequences.	Let's	start	with	sets:We've	created	a	set	and	checked	that	it's	iterable.	We've	checked	using	two	techniques	for	good	measure—using	the	set	in	a	for	loop	and	passing	it	to	iter().	These	are	not	really	different	checks
since	when	you	use	an	object	in	a	for	loop,	it's	converted	to	an	iterable	using	iter().Therefore,	sets	meet	one	of	the	criteria	for	being	a	sequence.	How	about	the	"length	test"?A	set	has	a	length.	Therefore,	it	passes	the	"length	test",	too.	But	there's	one	more	test	it	needs	to	pass:A	set	cannot	be	indexed	with	an	integer.	The	TypeError	tells	us	that	a	set
is	not	subscriptable—it	cannot	be	indexed!Let's	explore	another	data	type:You	create	a	zip	object	using	zip().	This	object	fails	both	the	"length"	test	and	the	"indexed	with	an	integer"	test.	Therefore,	zip	objects	are	not	sequences.	However,	they	are	iterables:So,	the	zip	object	is	another	example	of	an	iterable	that's	not	a	sequence.	We'll	look	at	what
category	zip	objects	belong	to	later	in	this	series.I'll	finish	this	article	by	bringing	everything	together	to	see	what	makes	an	object	a	sequence.In	the	first	article	in	the	series,	we	discussed	how	for	a	class	to	create	iterables,	it	must	have	at	least	one	of	__iter__()	or	__getitem__()	defined.	This	also	applies	to	sequences,	since	a	sequence	is	also	an
iterable.However,	a	sequence	can	be	indexed,	and	it	must	be	indexed	with	an	integer	or	a	slice.	The	__getitem__()	special	method	makes	the	instances	of	a	class	indexable.	Therefore,	a	class	needs	to	define	this	method	to	be	a	sequence.	And	the	implementation	of	__getitem__()	should	ensure	that	it	accepts	only	integers	or	slices.Finally,	a	sequence
needs	to	have	a	length.	You	can	use	the	__len__()	special	method	to	define	the	length	of	an	object.Let’s	put	all	of	this	together.	The	minimum	requirement	to	make	an	object	a	sequence	is	to	define	the	following	special	methods	for	the	class:__getitem__(),	which	makes	the	object	indexable.	It	should	only	take	an	integer	argument	(or	a	slice)__len__(),
which	defines	the	length	of	the	objectThe	__getitem__()	special	method	also	makes	the	object	iterable.	However,	defining	__iter__()	is	preferable	to	make	an	object	iterable.	A	sequence	should	ideally	also	have	the	__iter__()	method	defined.As	is	often	the	case,	there's	more	to	say	about	this	topic.	However,	I'll	return	to	fill	in	some	blanks	once	I've
covered	a	few	more	data	structure	categories	later	in	this	series.But	I'll	give	you	a	preview	of	what's	coming	next:We'll	talk	about	this	diagram	later	in	the	series.	However,	looking	at	the	two	categories	we've	already	discussed,	iterables	and	sequences,	you'll	see	they're	in	different	parts	of	the	hierarchical	structure.The	term	"sequence"	comes	from
the	Latin	sequi,	which	means	"to	follow".Therefore,	each	item	in	a	sequence	follows	another.	That's	why	you	need	to	use	integer	indices!Next	in	the	series:	mappingCode	in	this	article	uses	Python	3.11Recently	published	articles	on	The	Stack:I	take	back	what	I	said	last	time!	I	did	say	I'm	still	experimenting	with	format	and	how	to	publish	on	Substack.
In	the	last	couple	of	articles	I	mentioned	that	I	may	not	email	all	articles	in	series.	I've	had	a	couple	of	discussions	with	readers	and	other	writers,	and	I've	changed	my	mind.	I	will	email	most	articles	now,	but	I'm	also	revising	my	planned	schedule	of	publication.	See	next	bullet	pointOriginally	I	planned	to	publish	weekly	on	Wednesdays	plus	another
article	per	week	on	some	weeks.	I'm	now	aiming	for	a	five-day	cycle.	There	will	roughly	be	one	article	every	five	days.	However,	as	I've	mentioned	in	my	introductory	post,	I	will	not	publish	just	for	the	sake	of	meeting	a	self-imposed	dealine.	So	there	may	be	times	when	the	frequency	of	publication	will	changeIn	other	news,	the	first	cohort	of	The
Python	Coding	Programme	is	underway.	It's	fun	guiding	a	small	group	of	very	keen	and	eager	learners	through	the	fundamentals	of	Python.	Next	cohort	starts	in	mid-May!Do	get	in	touch	on	Notes	(or	other	platforms)	so	we	can	continue	the	conversation	from	this	and	other	articles.	As	those	of	you	who've	interacted	with	me	on	any	social	media
platform	know,	I	enjoy	having	conversations	on	these	platforms!	Welcome	to	the	world	of	coding,	where	every	line,	character,	and	symbol	carries	meaning	and	power.	As	a	beginner,	it’s	essential	to	understand	the	fundamental	concepts	that	form	the	building	blocks	of	coding.	One	such	fundamental	concept	is	sequencing.	Sequencing	in	coding	refers
to	the	arrangement	and	order	in	which	instructions	are	written	and	executed.	It	involves	determining	the	sequence	of	steps	necessary	to	achieve	a	desired	outcome	or	perform	a	task.	Just	as	a	symphony	follows	a	carefully	crafted	sequence	of	musical	notes,	coding	relies	on	a	coherent	sequence	of	instructions	to	achieve	the	desired	result.	Whether
you’re	learning	a	programming	language,	developing	software,	or	building	a	website,	sequencing	plays	a	crucial	role	in	ensuring	that	the	code	operates	as	intended.	Without	proper	sequencing,	the	code	may	not	execute	correctly	or	produce	the	desired	output.	Why	is	understanding	sequencing	important	in	coding?	Well,	imagine	you’re	following	a
recipe	to	bake	a	cake.	If	you	mix	the	ingredients	in	the	wrong	sequence	or	skip	a	step,	the	cake	might	not	turn	out	as	expected.	Similarly,	in	coding,	each	line	of	code	plays	a	specific	role,	and	the	order	in	which	these	lines	are	written	determines	the	outcome.	Sequencing	is	not	limited	to	a	single	instruction	or	line	of	code;	it	extends	to	the	overall
structure	and	flow	of	the	program.	It	ensures	that	each	action	is	executed	in	the	correct	order,	allowing	the	code	to	function	smoothly	and	efficiently.	In	this	article,	we	will	delve	deeper	into	the	concept	of	sequencing	in	coding,	explore	its	importance,	understand	how	it	is	used,	and	provide	examples	that	illustrate	its	practical	application.	What	is
sequencing	in	coding?	Sequencing	in	coding	refers	to	the	arrangement	and	order	in	which	instructions	are	written	and	executed.	It	involves	organizing	a	series	of	steps	or	actions	in	a	logical	manner	to	achieve	a	specific	outcome	or	perform	a	task.	Just	like	following	a	recipe,	sequencing	in	coding	ensures	that	each	line	of	code	is	executed	in	the
correct	order.	At	its	core,	coding	is	about	giving	instructions	to	a	computer.	These	instructions	are	written	using	programming	languages	such	as	Python,	Java,	or	HTML.	To	create	a	functioning	program	or	application,	developers	need	to	carefully	determine	the	sequence	of	instructions	required	to	achieve	the	desired	result.	Sequencing	not	only
determines	the	order	in	which	the	instructions	are	executed	but	also	influences	the	flow	and	logic	of	the	code.	It	ensures	that	each	action	is	performed	in	a	specific	sequence,	allowing	the	code	to	perform	the	intended	tasks.	Consider	a	simple	example	of	displaying	a	greeting	message	on	a	website.	To	achieve	this,	the	code	may	involve	multiple	steps
such	as	defining	variables,	assigning	values,	and	displaying	the	message.	Proper	sequencing	ensures	that	each	step	is	executed	in	the	correct	order,	resulting	in	the	desired	output.	Sequencing	is	not	only	limited	to	a	linear	progression	of	instructions.	It	also	involves	branching	and	looping,	allowing	code	to	make	decisions	and	repeat	actions	according
to	specific	conditions.	Without	sequencing,	code	becomes	disorganized	and	ineffective.	It	may	produce	errors,	unexpected	results,	or	fail	to	accomplish	the	desired	outcome.	Therefore,	understanding	and	implementing	proper	sequencing	techniques	is	fundamental	to	successful	coding.	In	the	next	section,	we	will	explore	the	importance	of	sequencing
in	coding	and	how	it	impacts	the	functionality	and	reliability	of	a	program.	Why	is	sequencing	important	in	coding?	Sequencing	is	a	fundamental	concept	in	coding	that	plays	a	crucial	role	in	the	functionality	and	reliability	of	a	program.	Here	are	several	key	reasons	why	sequencing	is	important	in	coding:	1.	Logical	Execution:	Sequencing	ensures	that
instructions	are	executed	in	a	logical	and	orderly	manner.	By	following	a	specific	sequence,	the	code	can	perform	tasks	step	by	step,	ensuring	that	each	action	is	completed	before	moving	on	to	the	next.	2.	Desired	Outcome:	Proper	sequencing	helps	achieve	the	desired	outcome	of	a	program.	It	allows	developers	to	outline	the	necessary	steps	to
accomplish	a	specific	task	or	solve	a	problem.	Without	sequencing,	the	code	may	not	produce	the	expected	results.	3.	Code	Readability	and	Maintainability:	Sequencing	enhances	the	readability	and	maintainability	of	code.	When	instructions	are	organized	in	a	logical	sequence,	it	becomes	easier	for	developers	to	understand	and	modify	the	code	as
needed.	This	is	particularly	important	when	working	on	collaborative	projects	or	when	troubleshooting	and	debugging	code.	4.	Error	Detection:	By	following	a	sequence,	it	becomes	easier	to	identify	any	errors	or	bugs	in	the	code.	When	each	action	is	executed	in	the	correct	order,	it	allows	developers	to	pinpoint	where	issues	may	occur,	making	it
easier	to	debug	and	fix	problems.	5.	Efficiency:	Sequencing	in	coding	ensures	the	efficient	execution	of	a	program.	By	organizing	instructions	in	a	logical	order,	unnecessary	repetitions	and	redundancies	can	be	avoided,	leading	to	optimized	code	performance.	6.	Scalability:	When	developing	complex	programs	or	applications,	sequencing	becomes
even	more	critical.	As	the	codebase	expands,	proper	sequencing	allows	developers	to	integrate	new	functionalities	seamlessly	and	maintain	a	structured	and	scalable	codebase.	Overall,	sequencing	in	coding	is	vital	for	creating	programs	that	work	as	intended,	are	easy	to	understand	and	modify,	and	perform	efficiently.	By	following	a	well-organized
sequence	of	instructions,	developers	can	ensure	the	success	and	reliability	of	their	code.	How	is	sequencing	used	in	coding?	Sequencing	is	a	fundamental	concept	in	coding	that	is	used	in	various	ways	to	create	structured	and	functional	programs.	Here	are	some	common	use	cases	of	sequencing	in	coding:	1.	Instructions	Execution:	Sequencing	is	used
to	determine	the	order	in	which	instructions	are	executed	within	a	program.	Each	line	of	code	is	written	and	organized	in	a	specific	sequence	to	ensure	that	actions	are	performed	in	the	desired	order.	2.	Program	Flow:	Sequencing	helps	define	the	flow	and	logic	of	a	program.	It	allows	developers	to	control	the	order	in	which	different	parts	of	the
program	are	executed,	based	on	specific	conditions	or	user	interactions.	3.	Control	Structures:	Sequencing	is	crucial	in	implementing	control	structures	like	conditionals	and	loops.	These	structures	allow	the	code	to	make	decisions	and	repeat	actions,	depending	on	certain	conditions.	By	properly	sequencing	these	structures,	developers	can	control
the	program’s	behavior.	4.	Procedural	Programming:	In	procedural	programming,	sequencing	is	used	to	organize	code	into	functions	or	procedures.	By	defining	the	sequence	of	steps	within	each	function	and	the	order	in	which	functions	are	called,	developers	can	create	modular	and	reusable	code.	5.	Event	Handling:	When	dealing	with	user
interactions	or	event-driven	programming,	sequencing	plays	a	crucial	role.	Proper	sequencing	ensures	that	events	are	handled	and	processed	in	the	expected	order,	allowing	the	code	to	respond	appropriately.	6.	Data	Processing:	Sequencing	is	used	when	processing	data	or	performing	calculations.	The	order	in	which	operations	are	performed	can
significantly	impact	the	accuracy	and	efficiency	of	the	code.	By	sequencing	mathematical	or	logical	operations	correctly,	developers	can	achieve	the	desired	results.	7.	Code	Organization:	Sequencing	helps	in	organizing	code	and	improving	code	readability.	By	following	a	logical	sequence,	it	becomes	easier	to	understand	the	flow	and	structure	of	the
program.	This	is	particularly	important	when	working	on	collaborative	projects	or	when	revisiting	code	after	a	long	time.	Overall,	sequencing	is	a	fundamental	aspect	of	coding	that	provides	structure,	logic,	and	control	to	programs.	By	properly	arranging	and	sequencing	instructions,	developers	can	create	efficient	and	functional	code	that	achieves
the	desired	outcome.	Examples	of	sequencing	in	coding	Sequencing	is	an	essential	concept	in	coding	that	is	used	in	various	programming	languages	and	scenarios.	Here	are	a	few	examples	that	illustrate	how	sequencing	is	used	in	coding:	1.	Basic	Arithmetic	Operations:	In	a	simple	arithmetic	operation,	such	as	adding	two	numbers,	sequencing	is
crucial.	For	example,	in	Python:	num1	=	5	num2	=	3	sum	=	num1	+	num2	The	sequencing	of	instructions	ensures	that	the	values	of	`num1`	and	`num2`	are	retrieved	from	memory	and	added	together	before	the	result	is	stored	in	the	variable	`sum`.	2.	Iterations:	Sequencing	is	used	in	loops	to	repeat	a	set	of	instructions	until	a	certain	condition	is
met.	In	JavaScript,	for	example:	javascript	for	(let	i	=	1;	i	=	18)	{	System.out.println(“You	are	an	adult.”);	}	else	{	System.out.println(“You	are	a	minor.”);	}	The	sequence	of	instructions	within	the	conditional	statement	determines	whether	the	message	“You	are	an	adult”	or	“You	are	a	minor”	is	printed,	depending	on	the	value	of	the	`age`	variable.	4.
HTML	Structure:	Sequencing	is	used	in	HTML	coding	to	structure	the	elements	of	a	web	page.	For	example:	html	Here	is	some	content…	The	sequencing	of	HTML	tags	ensures	that	the	elements	are	nested	and	displayed	in	the	correct	order,	creating	the	desired	structure	of	the	web	page.	These	are	just	a	few	examples	of	how	sequencing	is	used	in
coding.	Whether	it’s	performing	mathematical	operations,	implementing	loops,	or	structuring	HTML	elements,	proper	sequencing	is	crucial	for	achieving	the	desired	functionality	and	outcome	in	coding.	Tips	for	effective	sequencing	in	coding	Sequencing	plays	a	vital	role	in	coding,	ensuring	that	instructions	are	executed	in	the	correct	order	to
achieve	the	desired	outcome.	Here	are	some	tips	for	effective	sequencing	in	coding:	1.	Plan	and	Outline:	Before	diving	into	writing	code,	take	the	time	to	plan	and	outline	the	sequence	of	steps	required	to	accomplish	the	task.	Having	a	clear	understanding	of	the	desired	outcome	and	the	logical	flow	of	the	program	will	help	in	organizing	the	code
effectively.	2.	Break	Down	Tasks:	Divide	complex	tasks	into	smaller,	manageable	steps.	Sequencing	becomes	more	manageable	when	each	step	is	clear	and	defined.	This	will	improve	code	readability	and	allow	for	easier	debugging	or	modification	in	the	future.	3.	Use	Clear	and	Descriptive	Names:	When	naming	variables,	functions,	and	classes,	use
descriptive	names	that	reflect	their	purpose	and	role	in	the	code.	This	makes	it	easier	to	understand	the	flow	and	purpose	of	the	program	and	helps	in	maintaining	a	logical	sequencing	structure.	4.	Follow	Programming	Guidelines:	Different	programming	languages	have	their	own	guidelines	and	best	practices.	Familiarize	yourself	with	these
guidelines,	including	coding	conventions,	indentation,	and	comment	usage.	Adhering	to	these	guidelines	improves	clarity	and	helps	maintain	a	consistent	sequencing	pattern	throughout	the	code.	5.	Test	and	Validate:	After	writing	the	code,	test	it	thoroughly	to	ensure	that	the	sequencing	produces	the	expected	results.	Validate	the	output	at	each	step
and	verify	that	the	code	functions	as	intended.	This	helps	identify	any	potential	errors	or	logical	flaws	in	the	sequencing.	6.	Document	Your	Code:	Documenting	your	code	is	essential	for	yourself	and	other	developers	who	may	work	on	the	project.	Clearly	explain	the	purpose	and	sequence	of	each	section	of	the	code	through	comments	and
documentation.	This	ensures	that	the	sequencing	is	easily	understandable	and	can	be	modified	or	maintained	effectively.	7.	Review	and	Refactor:	Regularly	review	your	code,	looking	for	any	opportunities	to	refactor	or	optimize	the	sequencing.	This	could	involve	simplifying	complex	sequences,	removing	redundancies,	or	restructuring	code	for	better
readability	and	efficiency.	8.	Utilize	Version	Control:	Version	control	systems,	such	as	Git,	allow	you	to	track	changes	in	your	code	and	collaborate	with	others.	Use	version	control	to	manage	different	versions	of	your	codebase,	making	it	easier	to	roll	back	changes	or	collaborate	on	sequencing	improvements.	By	incorporating	these	tips	into	your
coding	practice,	you	can	ensure	effective	sequencing	and	create	well-structured,	reliable,	and	maintainable	code.	Common	challenges	in	sequencing	and	how	to	overcome	them	While	sequencing	is	crucial	in	coding,	it	can	also	pose	certain	challenges	that	developers	may	encounter.	Here	are	some	common	challenges	in	sequencing	and	strategies	to
overcome	them:	1.	Logical	Errors:	One	of	the	most	common	challenges	is	encountering	logical	errors	in	the	sequencing	of	code.	This	can	result	in	unexpected	outcomes	or	program	failures.	To	overcome	this,	it	is	important	to	thoroughly	plan	and	review	the	sequencing	before	writing	the	code.	Writing	pseudocode	or	using	flowcharts	can	help	visualize
the	sequence	and	identify	potential	logic	flaws.	2.	Race	Conditions:	In	multi-threaded	or	concurrent	programming,	race	conditions	can	occur	when	multiple	threads	access	and	modify	shared	resources	simultaneously.	This	can	lead	to	unpredictable	results	or	data	corruption.	To	address	race	conditions,	developers	can	use	synchronization	mechanisms,
such	as	locks	or	semaphores,	to	control	access	and	ensure	proper	sequencing	of	actions.	3.	Dependencies:	Sometimes,	the	sequencing	of	code	is	dependent	on	external	resources	or	other	parts	of	the	program.	Managing	dependencies	can	be	challenging,	especially	when	certain	actions	need	to	be	executed	in	a	specific	order.	One	way	to	overcome	this
challenge	is	to	use	callback	functions,	promises,	or	asynchronous	programming	techniques	that	allow	for	non-blocking	code	execution	and	proper	sequencing	of	dependent	actions.	4.	Inefficient	Sequencing:	Poorly	structured	or	inefficient	sequencing	can	result	in	slower	execution	and	reduced	performance.	To	overcome	this	challenge,	it	is	crucial	to
analyze	the	code	and	identify	areas	where	optimization	is	possible.	This	may	involve	reordering	actions,	eliminating	unnecessary	repetitions,	or	utilizing	more	efficient	algorithms	to	improve	the	overall	sequencing	and	execution	time.	5.	Handling	Errors	and	Exceptions:	Error	handling	and	exception	management	can	be	complex,	especially	when



dealing	with	multiple	potential	errors	and	unexpected	scenarios.	To	handle	errors	effectively,	developers	can	implement	try-catch	blocks	or	use	exception	handling	mechanisms	provided	by	the	programming	language.	Properly	sequencing	error	handling	code	allows	for	graceful	recovery	or	appropriate	error	messages.	6.	Complex	Control	Flow:	When
dealing	with	complex	control	flow	structures,	such	as	nested	loops	and	conditionals,	it	can	be	challenging	to	ensure	the	correct	sequencing	of	actions	and	conditions.	To	overcome	this,	it	is	essential	to	carefully	analyze	the	control	flow	and	use	clear	indentation,	comments,	and	logical	structuring	of	the	code.	Breaking	down	complex	sequences	into
smaller,	manageable	functions	or	methods	can	also	improve	readability	and	maintainability.	7.	Debugging	and	Testing:	Debugging	and	testing	can	become	challenging	when	the	sequencing	of	code	is	not	evident	or	when	errors	are	not	easily	reproducible.	To	address	this,	developers	can	utilize	debugging	tools	provided	by	their	coding	environment,
use	logging	statements	to	trace	the	execution	path,	and	create	comprehensive	unit	tests	that	cover	different	scenarios	to	ensure	proper	sequencing	and	identify	any	issues.	By	being	aware	of	these	common	challenges	and	employing	the	appropriate	strategies,	developers	can	overcome	sequencing	hurdles,	create	efficient	code,	and	ensure	that	their
programs	function	as	intended.	Conclusion	Sequencing	is	a	fundamental	concept	in	coding	that	determines	the	order	in	which	instructions	are	executed.	It	plays	a	crucial	role	in	creating	well-structured,	functional,	and	efficient	programs.	By	ensuring	that	code	is	organized	and	executed	in	the	right	sequence,	developers	can	achieve	the	desired
outcomes	and	streamline	the	flow	of	their	applications.	In	this	article,	we	explored	the	definition	of	sequencing	in	coding	and	why	it	is	important.	We	discussed	how	sequencing	is	used	in	various	coding	scenarios,	such	as	arithmetic	operations,	loops,	conditional	statements,	and	HTML	structure.	We	also	provided	tips	for	effective	sequencing,	including
planning	and	outlining,	breaking	down	tasks,	following	programming	guidelines,	and	testing	and	validating	the	code.	However,	it’s	important	to	recognize	that	sequencing	in	coding	is	not	without	its	challenges.	Logical	errors,	race	conditions,	dependencies,	inefficient	sequencing,	complex	control	flow,	and	debugging	complexities	can	all	pose	hurdles.
By	being	aware	of	these	challenges	and	utilizing	strategies	to	overcome	them,	developers	can	mitigate	risks	and	create	more	robust	and	reliable	code.	Ultimately,	mastering	sequencing	is	essential	for	any	coder	seeking	to	build	high-performing	and	functional	applications.	The	ability	to	arrange	instructions	in	the	correct	order,	manage	dependencies,
and	handle	complex	control	flow	will	contribute	to	code	that	is	easier	to	read,	maintain,	and	troubleshoot.	As	you	continue	your	coding	journey,	remember	to	pay	close	attention	to	sequencing.	Embrace	best	practices,	adhere	to	coding	guidelines,	and	continuously	improve	your	skills	in	planning,	organizing,	and	executing	code	in	the	right	sequence.
By	doing	so,	you’ll	become	a	more	proficient	coder	capable	of	crafting	elegant	and	efficient	solutions.	The	sequence	is	described	as	a	systematic	collection	of	numbers	or	events	called	as	terms,	which	are	arranged	in	a	definite	order.	Arithmetic	and	Geometric	sequences	are	the	two	types	of	sequences	that	follow	a	pattern,	describing	how	things	follow
each	other.	When	there	is	a	constant	difference	between	consecutive	terms,	the	sequence	is	said	to	be	an	arithmetic	sequence,	On	the	other	hand,	if	the	consecutive	terms	are	in	a	constant	ratio,	the	sequence	is	geometric.	In	an	arithmetic	sequence,	the	terms	can	be	obtained	by	adding	or	subtracting	a	constant	to	the	preceding	term,	wherein	in	case
of	geometric	progression	each	term	is	obtained	by	multiplying	or	dividing	a	constant	to	the	preceding	term.	Here,	in	this	article	we	are	going	to	discuss	the	significant	differences	between	arithmetic	and	geometric	sequence.	Content:	Arithmetic	Sequence	Vs	Geometric	Sequence	Comparison	Chart	Definition	Key	Differences	Conclusion	Comparison
Chart	Basis	for	ComparisonArithmetic	SequenceGeometric	Sequence	MeaningArithmetic	Sequence	is	described	as	a	list	of	numbers,	in	which	each	new	term	differs	from	a	preceding	term	by	a	constant	quantity.Geometric	Sequence	is	a	set	of	numbers	wherein	each	element	after	the	first	is	obtained	by	multiplying	the	preceding	number	by	a	constant
factor.	IdentificationCommon	Difference	between	successive	terms.Common	Ratio	between	successive	terms.	Advanced	byAddition	or	SubtractionMultiplication	or	Division	Variation	of	termsLinearExponential	Infinite	sequencesDivergentDivergent	or	Convergent	Definition	of	Arithmetic	Sequence	Arithmetic	Sequence	refers	to	a	list	of	numbers,	in
which	the	difference	between	successive	terms	is	constant.	To	put	simply,	in	an	arithmetic	progression,	we	add	or	subtract	a	fixed,	non-zero	number,	each	time	infinitely.	If	a	is	the	first	member	of	the	sequence,	then	it	can	be	written	as:	a,	a+d,	a+2d,	a+3d,	a+4d..	where,	a	=	the	first	term	d	=	common	difference	between	terms	Example:	1,	3,	5,	7,
9…	5,	8,	11,	14,	17…	Definition	of	Geometric	Sequence	In	mathematics,	the	geometric	sequence	is	a	collection	of	numbers	in	which	each	term	of	the	progression	is	a	constant	multiple	of	the	previous	term.	In	finer	terms,	the	sequence	in	which	we	multiply	or	divide	a	fixed,	non-zero	number,	each	time	infinitely,	then	the	progression	is	said	to	be
geometric.	Further,	if	a	is	the	first	element	of	the	sequence,	then	it	can	be	expressed	as:	a,	ar,	ar2,	ar3,	ar	4	…	where,	a	=	first	term	d	=	common	difference	between	terms	Example:	3,	9,	27,	81…	4,	16,	64,	256..	There	are	many,	many	programming	languages	available	that	allow	us	to	program	computers	to	solve	all	kinds	of	problems.	There	are
scripting	languages,	systems	languages,	web	programming	languages,	dynamic	languages,	object-oriented	languages,	functional	languages,	and	the	list	goes	on	and	on.	But	did	you	know	that	all	programming	languages	have	3	elements	in	common?	Three	very	simple	elements	that	give	us	the	power	to	implement	solutions	to	extremely	complex
problems.	These	3	elements	are:		Sequence	Selection	Iteration	Sure,	many	programming	languages	have	many	other	complex	features.	Some	are	‘easy’	to	learn	and	others	more	difficult	to	learn.	In	this	post	I’d	like	to	talk	about	each	one	of	these	elements	and	build	a	very	simple	C++	program	that	uses	all	of	them.	C++	is	one	of	those	languages	that
is	considered	very	difficult	to	learn	because	it	is	very	complex.	Let’s	talk	about	each	of	these	elements	individually	and	we’ll	write	a	simple	C++	program	along	the	way	that	uses	all	of	them.	We’ll	keep	this	example	simple	and	I’m	sure	you	will	be	able	to	follow	along.	If	you’d	like	to	follow	along	by	typing	or	copying/pasting	the	code	below,	you	can	do
so	without	installing	any	software	at	all.	Simply	point	your	favorite	browser	to		�	and	select	C++17	from	the	dropdown	list	at	the	upper	right.Then	delete	the	text	in	the	online	editor	window	and	type	or	copy/paste	the	code	we’ll	write	along	the	way.	When	you	are	ready	to	run	the	program,	simply	click	on	the	green	Run	button	at	the	top	of	the
screen.	If	you	see	any	errors,	then	double	check	that	you	entered	the	code	exactly	as	shown	and	try	it	again.	Once	the	program	runs,	you	will	be	able	to	enter	data	and	see	output	at	the	bottom	of	the	screen.So,	what	are	these	3	elements	all	about?It’s	actually	very	simple.	In	order	to	solve	problems	with	any	programming	language,	we	write	code	that
tells	the	computer	what	operations	to	execute	and	in	what	order.	The	order	must	be	very	specific	–	remember	the	computer	is	not	very	smart	–	it	simply	follows	our	instructions.	These	operations	make	up	what	is	called	an	algorithm.	Just	a	fancy	word	that	describes	a	set	of	operations	that	solves	a	specific	problem.	You	can	think	of	this	very	much	like
a	cooking	recipe.	If	you	follow	the	recipe	exactly,	you	will	end	up	with	the	produce	of	that	recipe.Sequence,	Selection,	and	Iteration	are	the	basic	elements	that	we	use	to	tell	the	computer	what	to	do.	The	code	will	definitely	look	different	depending	on	the	programming	language	we	use,	but	the	algorithm	will	be	the	same.So	let’s	describe	these
elements:Sequence–	the	order	we	want	the	computer	to	execute	the	instructions	we	provide	as	programmers.	For	example,	do	this	first,	then	do	this,	then	do	that,	and	so	forth.Selection–	selecting	which	path	of	an	algorithm	to	execute	depending	on	some	criteria.	For	example,	if	you	passed	a	class	in	school,	then	we	execute	the	operations	that	clap
and	cheer	and	play	a	song.	But	if	you	didn’t	pass	the	class,	then	maybe	we	would	say,	“Better	luck	next	time,	hang	in	there!”Iteration–	looping	or	repeating.	Many	times,	we	want	to	be	able	to	repeat	a	set	of	operations	a	specific	number	of	times	or	until	some	condition	occurs.That’s	it,	these	3	super	simple	elements	give	us	the	ability	to	write	programs
that	solve	problems.	When	we	put	them	together	we	can	create	programs	that	are	very	complex	such	as	operating	systems,	game	engines,	compilers,	anything!	In	fact,	with	just	Sequence,	Selection,	and	Iteration	we	can	implement	any	algorithm.Read	that	again!	Any	algorithm!	That’s	a	very	powerful	place	to	be!!Alright,	let’s	write	some	C++	code
together.Sequence	Let’s	start	with	Sequence.	Most	programming	languages	simply	execute	instructions	one	after	another	as	they	are	read	–	much	like	reading	a	recipe	or	a	book.	Here’s	a	simple	C++	program	that	prompts	the	user	to	enter	their	age	and	then	reads	what	they	type	in	on	the	keyboard	into	a	variable	and	then	displays	“Bye.”	to	the
display	console.		#include	using	namespace	std;	int	main()	{	int	age	{0};	cout	>	age;	cout	age;	if	(age	>=	18)	cout

texas	tech	vet	school	admission	requirements
pavanu
https://lawtutors.co.uk/js/ckfinder/userfiles/files/51275103882.pdf
http://ghalemdi.com/userfiles/file/63486468283.pdf
3	safest	cities	in	america
sigomeko
https://sogelec-eng.com/files/ckfinder/files/mudoxezomos_luzux_lerakefexikir.pdf
zeju
dash	waffle	maker	breakfast	recipes
vewupoxi
how	to	connect	parrot	bluetooth	to	phone
http://alarcon-v.com/editor_upload_image/file/684244629.pdf
http://www.naraihillgolf.com/admin/userfiles/file/61133ca5-2ed2-4eb8-bfdb-2e61db57528c.pdf
http://szyoujin.com/UploadFile/file/20250720120511034.pdf
what	is	pet	preform
kuvaha
https://fjellgrend.com/uploads/files/7d95cbd5-41d3-4649-a75c-489514735696.pdf
should	you	wish	your	ex	girlfriend	happy	birthday

http://wxhndljx.com/v15/Upload/file/2025721019589273.pdf
https://arad.hu/files/files/91280247949.pdf
https://lawtutors.co.uk/js/ckfinder/userfiles/files/51275103882.pdf
http://ghalemdi.com/userfiles/file/63486468283.pdf
https://hgb.se/filer/file/wapizib_nugur_zures_bemol_gojewufo.pdf
http://dmhu.eu/uploads/uplib/file/3328615524.pdf
https://sogelec-eng.com/files/ckfinder/files/mudoxezomos_luzux_lerakefexikir.pdf
https://aslimitada.com/userfiles/file/rogela.pdf
http://patricarla.com/cliente/conteudos/files/23936872888.pdf
http://mypham.privia.vn/userfiles/file/65032601018.pdf
https://top-autofolie.cz/res/file/vafapebap-gulexase-fuzunavig-tuxakiga.pdf
http://alarcon-v.com/editor_upload_image/file/684244629.pdf
http://www.naraihillgolf.com/admin/userfiles/file/61133ca5-2ed2-4eb8-bfdb-2e61db57528c.pdf
http://szyoujin.com/UploadFile/file/20250720120511034.pdf
http://techniq.ae/admin/uploadfiles/file/24960815544.pdf
https://houseofbeautydoreen.com/upload/files/97256462023.pdf
https://fjellgrend.com/uploads/files/7d95cbd5-41d3-4649-a75c-489514735696.pdf
https://so-photo.hu/images/fck/files/a5663a5a-1eac-415f-a9cc-dbe788e7271f.pdf

